• Title/Summary/Keyword: structural dynamic modifications

Search Result 30, Processing Time 0.021 seconds

FE model updating method incorporating damping matrices for structural dynamic modifications

  • Arora, Vikas
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.261-274
    • /
    • 2014
  • An accurate finite element (FE) model of a structure is essential for predicting reliably its dynamic characteristics. Such a model is used to predict the effects of structural modifications for dynamic design of the structure. These modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can't be used for accurate prediction of vibration amplitudes. This paper deals with the basic formulation of damped finite element model updating method and its use for structural dynamic modifications. In this damped damped finite element model updating method, damping matrices are updated along with mass and stiffness matrices. The damping matrices are updated by updating the damping coefficients. A case involving actual measured data for the case of F-shaped test structure, which resembles the skeleton of a drilling machine is used to evaluate the effectiveness of damped FE model updating method for accurate prediction of the vibration levels and thus its use for structural dynamic modifications. It can be concluded from the study that damped updated FE model updating can be used for structural dynamic modifications with confidence.

Dynamic Design of an NC Lathe by Using Substructure Synthesis Method (부분구조합성법을 이용한 NC선반의 동적설계)

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.126-135
    • /
    • 1989
  • In this study, in order to perform dynamic design of machine tools reasonably and effectively, a method was formulated to be applicable to the structures connected by joints having elasticity and damping by using substructure synthesis method. And to analyze chatter-free performance, a 3 dimensional cutting dynamics theory was used. Computer program package for the dynamic design of machine tools was developed by combining those and spplied to improvement of performance of NC lathe. Also, the optimization in the structural modifications of machine tool substructure was studied by evaluating the effects of the substructural modifications on total system performance.

  • PDF

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

  • Eom, Gwang Hyeon;Kook, Hyun
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.131-138
    • /
    • 2015
  • Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • Lotfollahi-Yaghin, Mohammad Ali;Kafshgarkolaei, Hassan Jafarian;Allahyari, Hamed;Ghazvini, Taher
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.55-67
    • /
    • 2015
  • Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

Design Modification of Bearing Walkout of Water Pump by a Finite Element Analysis (유한요소해석을 이용한 워터펌프 베어링돌출 설계 개선)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2006
  • A systematic methodology has been proposed to establish a reliable design of water pump system. A simplified steady-state dynamic model of water pump system has been developed to study the response of water pump system to the dynamic load mainly due to the run-out and unbalance. Design modifications are needed to strengthen the structural integrity of existing designs. Increasing the natural frequency of system is pursued to prevent a resonance from occurring in the engine excitation range. A computational reliability methodology combined with finite element analysis is used to identify the most significant factor affecting the system performance. This method considered influence of design control parameters for the performance of design. By including control factors to the system model in a systematic way, more reliable design is expected.

Estimation of Dynamic Characteristics of an Offshore Meteorological Tower using Ambient Measurements (상시계측을 통한 해상기상탑의 동적특성 평가)

  • Gyehee Lee;Le Quoc Cuong;Daejin Kwag
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2023
  • In research conducted on a southwestern Korean offshore meteorological tower, acceleration datasets were gathered over half a year with time-history sensors. To enhance data credibility, a parallel measurement system was used for verification. A model of the tower was configured using beam elements, and with modifications accounting for added stiffness from auxiliary structures. Ground interactions were considered as calibrated springs based on soil layer properties. The tower's dynamic attributes and mass sensitivity were discerned using eigenvalue analysis. The structural natural frequency was consistent, with variations primarily due to new equipment adding approximately 1400 kgs. With free vibration damping assumptions, a damping ratio of roughly 1 % was derived.

OMA testing by SLDV for FEM Updating

  • Milla, Brian-Mac;Mehdi Batel;Eddy Dascott;Ben Verbeeck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.840-840
    • /
    • 2003
  • Operational Modal Analysis (OMA) is a technique for identification of modal parameters by measurement of only the system's response. On many lightweight structures, such as load-speaker cones and disk drive read/write heads, is impossible or impractical to measure the input forces. Another characteristic of lightweight structure is their sensitivity to mass loading from sensors. The Scanning Laser Doppler Vibrometry(SLDV) allows response measurements to be taken without mass loading. One disadvantage of OMA testing compared to tradition input output modal testing is the OMA mode shapes are un-scaled. This means that the mode shape obtained from an OMA test can not used for analytical structural modification studies. However, the un-scaled mode shapes from an OMA test can be used to update a Finite Element Model (FEM). The updated FEM can then be used to analytically predict the effect of structural modifications. This paper will present the results of an OMA test performed on a simple plate and motor in operating conditions. The un-scaled mode shapes from this test will be used to update a FEM model of the system. The updated FEM model will be then be used to predict the effect of attaching a mass to the plate. The shapes predicted by the FEM for the modified system will be compared to a second OMA test on the modified system

  • PDF