• Title/Summary/Keyword: structural dynamic analysis

Search Result 3,115, Processing Time 0.03 seconds

Investigation of shear effects on the capacity and demand estimation of RC buildings

  • Palanci, Mehmet;Kalkan, Ali;Sene, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1021-1038
    • /
    • 2016
  • Considerable part of reinforced concrete building has suffered from destructive earthquakes in Turkey. This situation makes necessary to determine nonlinear behavior and seismic performance of existing RC buildings. Inelastic response of buildings to static and dynamic actions should be determined by considering both flexural plastic hinges and brittle shear hinges. However, shear capacities of members are generally neglected due to time saving issues and convergence problems and only flexural response of buildings are considered in performance assessment studies. On the other hand, recent earthquakes showed that the performance of older buildings is mostly controlled by shear capacities of members rather than flexure. Demand estimation is as important as capacity estimation for the reliable performance prediction in existing RC buildings. Demand estimation methods based on strength reduction factor (R), ductility (${\mu}$), and period (T) parameters ($R-{\mu}-T$) and damping dependent demand formulations are widely discussed and studied by various researchers. Adopted form of $R-{\mu}-T$ based demand estimation method presented in Eurocode 8 and Turkish Earthquake Code-2007 and damping based Capacity Spectrum Method presented in ATC-40 document are the typical examples of these two different approaches. In this study, eight different existing RC buildings, constructed before and after Turkish Earthquake Code-1998, are selected. Capacity curves of selected buildings are obtained with and without considering the brittle shear capacities of members. Seismic drift demands occurred in buildings are determined by using both $R-{\mu}-T$ and damping based estimation methods. Results have shown that not only capacity estimation methods but also demand estimation approaches affect the performance of buildings notably. It is concluded that including or excluding the shear capacity of members in nonlinear modeling of existing buildings significantly affects the strength and deformation capacities and hence the performance of buildings.

Active tuned tandem mass dampers for seismic structures

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.143-162
    • /
    • 2019
  • Motivated by a simpler and more compact hybrid active tuned mass damper (ATMD) system with wide frequency spacing (i.e., high robustness) but not reducing the effectiveness using the least number of ATMD units, the active tuned tandem mass dampers (ATTMD) have been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Likewise, it is expected that the frequency spacing of the ATTMD is comparable to that of the active multiple tuned mass dampers (AMTMD) or the multiple tuned mass dampers (MTMD). In accordance with the mode generalised system in the specific vibration mode being controlled (simply referred herein to as the structure), the closed-form expression of the dimensionless displacement variances has been derived for the structure with the attached ATTMD. The criterion for the optimum searching may then be determined as minimization of the dimensionless displacement variances. Employing the gradient-based optimization technique, the effects of varying key parameters on the performance of the ATTMD have been scrutinized in order to probe into its superiority. Meanwhile, for the purpose of a systematic comparison, the optimum results of two active tuned mass dampers (two ATMDs), two tuned mass dampers (two TMDs) without the linking damper, and the TTMD are included into consideration. Subsequent to work in the frequency domain, a real-time Simulink implementation of dynamic analysis of the structure with the ATTMD under earthquakes is carried out to verify the findings of effectiveness and stroke in the frequency domain. Results clearly show that the findings in the time domain support the ones in the frequency domain. The whole work demonstrates that ATTMD outperforms two ATMDs, two TMDs, and TTMD. Thereinto, a wide frequency spacing feature of the ATTMD is its highlight, thus deeming it a high robustness control device. Furthermore, the ATTMD system only needs the linking dashpot, thus embodying its simplicity.

Design Shear Force Reduction Factor of Upper Structure in Seismic Base-isolated System Considering Response Acceleration Decrement Effect (면진구조의 응답가속도 감소효과를 고려한 상부구조의 설계전단력 저감계수)

  • Chen, Hao;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.165-170
    • /
    • 2019
  • The structural damage caused by earthquake to the upper structure of seismic base-isolated system can be suppressed effectively because it is designed to concentrate the input energy on the seismic isolation floor. Further, the response acceleration of seismic base-isolated system can be greatly reduced compared to the seismic structure because of the long period, which means that the design shear force of the seismic base-isolated system can be reduced appropriately. However, when the design shear force is determined to be reduced, the design stiffness will decrease, and the response acceleration will increase oppositely. Therefore, for finding the extent to which the design shear force of the upper structure can be reduced, this paper considered the seismic base-isolated structure as the analytical model and proposed the design shear force reduction factor of the base-isolated structure through the dynamic response analysis, while considering the decrement effect of response acceleration. The research result shows that the response acceleration of the isolated the upper structure can be reduced by 50%~70% of the seismic structure under the same design conditions, and the design shear force can be reduced by up to 40%. By increasing the design stiffness over to 1.8 times of the original design value, the design shear force can be reduced to the same extent as the response acceleration can be reduced compared to the seismic structure.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz;Ignacio J., Navarro;Victor, Yepes
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • AliAsghar Moslemi Beirami;Vadim V. Ponkratov;Amir Ebrahim Akbari Baghal;Barno Abdullaeva;Mohammadali Nasrabadi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

Interrelationship Between Regional Population Migration, Crop Area, and Foreign Workers (지역 간 인구이동, 경지면적, 외국인 근로자의 관계 분석)

  • Seojin Cho;Heeyeun Yoon
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.21-38
    • /
    • 2024
  • Understanding the interrelationship between regional population dynamics and cultivated land is crucial for promoting regional economic vitality and enhancing food security. While prior research often addressed population migration and changes in crop area separately, this study employs a Panel Vector Auto Regression Model to examine the dynamic interaction between regional population shifts, changes in crop area, and the influx of foreign workers in agriculture. The results reveal a reciprocal relationship between population influx and crop area, indicating a negative impact on each other. Moreover, the analysis demonstrates that an expansion in crop area, particularly in field cultivation, significantly correlates with an increase in foreign workers. These findings underscore the mutual influence of labor shortages and diminished land availability in agriculture, with the influx of foreign workers potentially offering a positive impact on addressing structural challenges in rural areas.

Correlation of Seismic Loss Functions Based on Stories and Core Locations in Vertical-Irregular Structures (연층을 갖는 수직 비정형 건축물의 층수 및 코어 위치에 따른 지진손실함수 상관관계 분석)

  • Hahn, SangJin;Shim, JungEun;Jeong, MinJae;Cho, JaeHyun;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Piloti-type structures with vertical irregularity are vulnerable to earthquakes due to the soft structure of the first story. Structural characteristics of buildings can significantly affect the seismic loss function, calculated based on seismic fragility, and therefore need to be considered. This study investigated the effects of the number of stories and core locations on the seismic loss function of piloti-type buildings in Korea. Twelve analytical models were developed considering two variations: three stories (4-story, 5-story, and 6-story) and four core locations (center core, x-eccentric core, y-eccentric core, and xy-eccentric core). The interstory drift ratio and peak floor acceleration were assessed through incremental dynamic analysis using 44 earthquake records, and seismic fragility was derived. Seismic loss functions were calculated and compared using the derived seismic fragility and repair cost ratio of each component. The results indicate that the seismic loss function increases with more stories and when the core is eccentrically located in the piloti-type structure model. Therefore, the uncertainty due to the number of stories and core location should be considered when deriving the seismic loss function of piloti-type structures.

Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration (원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.