• Title/Summary/Keyword: structural displacement

Search Result 2,987, Processing Time 0.03 seconds

A Design and Performance Evaluation of Semi-active MR Damper for the Smart Control of Construction Structures (건설구조물의 스마트 제어를 위한 준능동 MR 감쇠기의 설계 및 성능평가)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.165-171
    • /
    • 2009
  • This research developed two semi-active MR dampers whose gaps in the orifice area were different from each other, and evaluated their damping performance by loading tests. The Damping performance of MR dampers characteristically depends on various factors like their material and mechanical ones, but most importantly on the size of gap in the orifice area. For this research, we designed the orifice gaps of two dampers as each 1.0mm and 2.0mm, both with the 80mm outer diameter of the orifice. We also designed two loading test sets with different input currents, and acquired different control ability from them. The acquired test results were analyzed and evaluated with their maximum and minimum damping force and also their dynamic range from the force-displacement hysteresis loops and the force-input current relationship curve. This research clearly proved how the damping performance of control devices depends on the gap effect, and also presented a possibility that the two dampers developed in this research could be used for the smart control of construction structures by effectively adapting the input current and the number of coil turns.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

A STUDY ON THE EFFECT OF THE CHINCAP BY FINITE ELEMENT ANALYSIS IN JUVENILE SKELETAL CLASS III PATIENTS (유년기 골격성 III급 부정교합자에서 이모장치의 효과에 관한 유한요소분석법적 연구)

  • Choi, Jeong-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.353-370
    • /
    • 1998
  • This study was conducted to investigate the changes in the structural parts of the craniofacial skeleton subsequent to chincap therapy in the juvenile skeletal Class III patients. The subject consisted of 29 Korean children(14 males, 15 females) who had skeletal Class III malocclusion and were undergone chincap therapy from the beginning of the treatment (and an auxilliary upper removable appliance, if necessary). The control group was composed of 21 children(10 males, 11 females) with skeletal Class III malocclusion who had no orthodontic treatment. Cephalometric data at the mean age of 7 and 2 years later were analyized by finite element method, and compared between groups by independent group t-test(p<0.05). The results of the present study were as follows; 1. There were no significant changes in the cranial base, posterior face, upper anterior face, ramus, chin and soft tissues by the chincap therapy. 2. The mandibular body showed significant differences in the minimum extention ratio and the overall shape ratio. This means that the vertical direction of growth was retarded by the chincap therapy. 3. The major direction of the growth in the maxillary basal bone was significantly more horizontal in the experimental group, which suggests that the vertical growth of maxilla was inhibited. 4. There was statistical difference in the major direction of the growth of the anterior face between groups. This may be due to the significant difference in the major direction of growth of the lower anterior face, supposed to be resulted from the mandibular rotation and/or displacement by the chincap therapy. The change in the oral functional space seemed to be caused by the same reason. 5. From the standpoint of these results, the retardation of growth, the changes of the growth direction and the morphological changes could be accepted partly, but the major effect of the chincap seems to be the rotation and the displacement of the mandible.

  • PDF

Optimal Configuration of the Truss Structures by Using Decomposition Method of Three-Phases (3단계(段階) 분할기법(分割技法)에 의한 평면(平面)트러스 구조물(構造物)의 형상(形狀) 최적화(最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Song, Gi Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.39-55
    • /
    • 1992
  • In this research, a Three Level Decomposition technique has been developed for configuration design optimization of truss structures. In the first level, as design variables, behavior variables are used and the strain energy has been treated as the cost function to be maximized so that the truss structure can absorb maximum energy. For design constraint of the optimal design problem, allowable stress, buckling stress, and displacement under multi-loading conditions are considered. In the second level, design problem is formulated using the cross-sectional area as the design variable and the weight of the truss structure as the cost function. As for the design constraint, the equilibrium equation with the optimal displacement obtained in the first level is used. In the third level, the nodal point coordinates of the truss structure are used as coordinating variable and the weight has been taken as the cost function. An advantage of the Three Level Decomposition technique is that the first and second level design problems are simple because they are linear programming problems. Moreover, the method is efficient because it is not necessary to carry out time consuming structural analysis and techniques for sensitivity analysis during the design optimization process. By treating the nodal point coordinates as design variables, the third level becomes unconstrained optimal design problems which is easier to solve. Moreover, by using different convergence criteria at each level of design problem, improved convergence can be obtained. The proposed technique has been tested using four different truss structures to yield almost identical optimum designs in the literature with efficient convergence rate regardless of constraint types and configuration of truss structures.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.

The Volumetric Ratio of Transverse Reinforcement of R/C Columns Considering Effective Lateral Confining Reduction Factor (유효횡구속압력 감소계수를 사용한 RC 기둥의 횡보강근량 평가)

  • Kim, Jong-Keun;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 2009
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to propose the volumetric ratio of transverse reinforcement for ultra-high strength concrete tied columns with 100 MPa compressive strength. Nineteen 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the main variables of axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. To improve the ductility behavior of RC column using ultra high strength concrete in a seismic region, We suggested the amount of transverse reinforcement for all data that satisfy the required displacement ductility ratio over 4. It is means that the lateral confining reduction factor (${\lambda}^c$) considering the effective legs, configuration and spacing of transverse reinforcement and axial load ratio was reflected for the volumetric ratio of transverse reinforcement.