• Title/Summary/Keyword: structural deterioration

Search Result 603, Processing Time 0.032 seconds

Application of Pipe-cooling Method in the Concrete Wall Structure (벽체 구조물의 파이프쿨링 공법 적용성 분석)

  • Shin, Kyoung-Seop;Kim, Se-Hoon;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.501-504
    • /
    • 2008
  • A number of structures constructed during past decades have suffered from safety and serviceability problems due to deterioration and many engineers have been increasingly concerned about durability of concrete. Pipe-cooling method has been popularly used in the massive concrete to reduce temperature of the structure. Until now, usually this pipe-cooling method was applied only in foundation concrete structures, but it is newly tried to apply in the wall structure. We analyzed thermal stress of wall structure with the general structural analysis program that will be able to express the pipe-cooling element. We studied about the effect of reducing temperature and cracking control in the wall structure which can be applied in a pipe-cooling method with the analytical result which follows in an arrangement of the cooling pipe.

  • PDF

Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과)

  • Park, Chan-Gi;Won, Jong-Pil;Yoo, Jung-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.811-819
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP re-bar is pone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Other potentially FRP re-bar aggressive environments are sea water, acid solution and fresh water/moisture. In this study long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP-, GFRP re-bar and one type of AFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile, compressive and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

Evaluation of Diffusion on Cement Mortar and Durability of Concrete Specimen Using Inorganic Coating Material and Surface Treatment System (무기질 도료 및 표면처리 시스템을 적용한 시멘트 모르타르와 콘크리트의 내구성 평가)

  • Kim, In-Seob;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Tae-Hyun;Shim, Kwang-Bo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. However, such high durable structure is often attacked by some environmental condition such as chloride diffusion, carbonation and so on. In order to prevent the deterioration behaviors of concrete structures. We estimated durability of concrete when used surface treatment system and coatings by new type inorganic coating materials. Base on the results of chloride ion's diffusion test, the coated cement mortar had smaller transmitted quantity.

Development of Creep Properties Evaluation Technique for Steel Weldment of Power Plant (발전설비 강 용접부의 크리프 특성 평가 기술 개발)

  • Lee, Dong-Hwan;Jeoung, Young-Hun;Baek, Seung-Se;Ha, Jeong-Soo;Song, Gee-Hook;Lee, Song-In;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.180-185
    • /
    • 2001
  • In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation.

  • PDF

Comparison of Ultrasonography Images on Normal Muscle and Myofascial Trigger Points Activated Muscle (정상근과 근막 유발점이 활성화된 근육의 초음파 영상의 비교)

  • Kim, Myung-Hoon;Kim, Su-Hyon;Kim, Hyun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • Purpose: The objective of this study was to offer primary clinical data examining whether change of imaging structure and quantitative evaluation of muscle activity on myofascial trigger points can lead to implementation of an analytical technique for evaluation of myofascial pain diagnoses. In addition, we examined the effect of a variety of mediation techniques, in order to examine neuromuscular physiological characteristics of myofascial trigger points muscle by comparing differences in pressure pain threshold and ultrasound imaging. Methods: Participants in the study included 30 adults in their twenties. The subjects were divided into the normal and myofascial trigger points groups. Clinical outcomes were evaluated by pressure pain threshold for pain and ultrasound imaging was performed for evaluation of the structural characteristics of muscle. Independent t-test was used for statistical analysis. Results: The two groups showed statistical significance in the change in pressure pain threshold (p<0.05). Findings of ultrasound imaging analysis showed no significant differences, increased muscle thickness was observed (p>0.05). Findings of ultrasound imaging analysis showed significant differences, increased muscle echodensity was observed (p<0.05). Findings on ultrasound imaging analysis showed significant differences, increased muscle white area index was observed (p<0.05). Conclusion: From these results, active myofascial trigger points muscle showed quality deterioration on ultrasound imaging. Thorough evaluation of imaging structure and physiological characteristics can be useful quantitative analytical techniques for diagnosis of myofascial pain syndrome and a primary factor reflected in physical therapy intervention.

A Study on the Problems and Character for Management of Fire Prevention at the Wholesale Markets (도매시장 화재안전관리 측면에서의 특성 및 취약요소에 관한 연구)

  • Park, Jae-Sung;Im, Jae-Keun
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.150-158
    • /
    • 2010
  • There are lots of buildings with their deterioration in wholesale markets which have high concentration that can cause big fire due to difficulty of installing fire protection system in fire compartment, absence of safety awareness, access by many and unspecified people. There had been big fire that caused by these kind of fire weakness such as Seomun Market's in 2005 which costed tens of millions dollar, Dongmun Shopping District’s with 7 casualties. Now counter-measure against these fire is urgently needed. This study drew characteristic of current condition of wholesale markets and the one classified by main agent, fire cases and prevention of fire through statistical data. Also, current condition of fire prevention management and actual state were investigated by conducting a survey of person in charge of fire prevention and current practician. As a result, it was shown that securing professionalism of fire prevention, improvement of structural weakness of buildings, obtaining reliability on performance of fire protection system and internal fire education against practician in the market are needed.

Review on the buoyancy effect of the multi purpose double-deck tunnels during operation (운영중 다목적 복층터널의 부력영향 검토)

  • Kim, Ho-jong;Kim, Hyeon-ah;Joo, Eun-jung;Shin, Jong-ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.623-635
    • /
    • 2015
  • Double-deck tunnels beneath the groundwater table have relatively large volume and commonly constructed as watertight tunnels. In this case, it requires to secure stability of the tunnels for buoyant force. Generally the contact force between lining and ground is sufficient to resist the buoyant force. However in the long-term the contact force could be reduced because of structural deterioration. In this study the effect of long-term buoyant force acting on the double-deck tunnel is investigated. The results has shown that the buoyant force has increased invert deformation and stress. It is indicated that the contact resilience between lining and ground needs to be kept during tunnel operation.

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

Work Softening Behavior of Zn-15%Al alloy (Zn-15%Al 합금의 가공연화 거동)

  • Jun, Joong-Hwan;Seong, Ki-Duk;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • Effect of cold rolling on microstructural changes has been investigated for a Zn-15%Al alloy to elucidate the reason for its work softening behavior. Fully annealed microstructure of the Zn-15%Al alloy is characterized by ${\eta}$ grains and (${\eta}+{\alpha}$) lamellar colonies, where ${\eta}$ and ${\alpha}$ are Zn-rich HCP and Al-rich FCC phases, respectively. The hardness decreases continuously with increasing cold rolling degree, exhibiting work softening behavior. It is revealed that during the cold rolling, (${\eta}+{\alpha}$) lamellar colonies gradually change into equiaxed ${\eta}$ and ${\alpha}$ grains due to dynamic recrystallization at room temperature, while pre-existing ${\eta}$ grains are only deformed without recrystallization. Furthermore, cold rolling causes the precipitation of dissolved Al solutes in ${\eta}$ grains. In view of these results, change of (${\eta}+{\alpha}$) phases from lamellar to equiaxed morphology, which results in structural softness and increase in equiaxed ${\eta}/{\alpha}$ grain boundaries with higher mobility, and deterioration of solution hardening by precipitation of Al solutes from ${\eta}$ grains, are thought to contribute to the work softening of Zn-15%Al alloy.

The Prediction of Yield Load in Circular Tubular T-type Cross Sections on the Truss Structures (강관트러스의 T형 격점부의 항복하중 예측에 관한 연구)

  • Park, Il Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2001
  • many steel tubular truss as roof structures are used of the large span structures Steel tubular sectioned truss has the structural merits in compared with other sections such as H, L-shape sections However it occurs local buckling at the joint of branch in truss and it makes the deterioration of loading capacity Loading capacity and deformation characteristics of truss joints are very complicate so it is very hard to predict exact solution of them Therefore this thesis dealt with T-type joints of steel circular hollow sectioned truss. A series of experimental scheme were planned and mainly experimental parameters were : ratio of diameter of branch-diameter of main chord(d/D). diameter-thickness(T/D) of main chord. In this paper predicted yield load capacity using by closed ring analysis method additionally compared with that of suggested by closed ring analysis method additionally compared with that of suggested by other countries.

  • PDF