• Title/Summary/Keyword: structural deterioration

Search Result 614, Processing Time 0.023 seconds

Numerical Modeling of Heat Transfer in Reinforced Concrete Columns Exposed to Fire (화재에 노출된 철근콘크리트 기둥의 수치해석적 열전달 모델)

  • Lee Chadon;Shin Yeong-Soo;Lee Seung-Whan;Lee Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.871-878
    • /
    • 2005
  • Reinforced concrete columns exposed to fire experience severe deterioration in material properties and subsequent structural capacities. Degree of losses in structural capacity of a column due to fire-damage mainly depends on the amount of heat transferred into the column during the fire. A reasonable heat transfer model of fire-damaged reinforced concrete column needs to take into account the heat-dependent nonlinear properties of heat conductivity and heat capacity of concrete as well as the evaporation of moistures in a section during the fire. Compared to the previously suggested models, the developed model in this study has included all these parameters in its numerical expressions based on explicit finite difference method. The developed model could predict the temperature changes with a reasonable accuracy for the columns exposed to fire.

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Analysis of Structural Characteristics of the Discipline of Public Administration in Korea from the Viewpoint of Research Ecosystem: Focused on Co-author, Citation, and Keyword Network (연구 생태계 관점에서 본 국내 행정학 분야의 구조적 특성 분석 - 공저자, 인용, 키워드 네트워크 중심으로 -)

  • Park, Cho-Hee;Lee, Sung-Sook
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.1
    • /
    • pp.213-235
    • /
    • 2020
  • This study examined the process of production, utilization and extinction of researches through academic activities to identify the structural characteristics of the field of discipline of administration in Korea from the viewpoint of research ecosystem. To this end, statistical and network analyses were conducted, focusing on bibliographies, references, and keyword for papers published in 29 domestic journals in the field of public administration for the past five years. The results of the analysis, researchers in the field of public administration in Korea maintain a rather horizontal connection and are connected organically rather than separately. In addition, the core academic journals and keyword were extracted to present the connection, and the speed of knowledge transfer and deterioration was measured to identify the phenomenon of decreasing value in literature.

A Study for Application of Polycarboxilic Type Admixture to Precast High-Strength Concrete Piles (프리캐스트 고강도 콘크리트(PHC) 파일에 조강형 폴리카본산(PC)계 혼화제의 적용에 관한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Park, Chul Ju;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.263-270
    • /
    • 2011
  • In this study, the performance of Poly-Naphthalene Sulfonate (PNS) type-admixture used widely in South Korea and Polycarboxilic type-admixture(i.e., WF2000) developed in the J company of the domestic, for precast concrete products produced in the factories, was evaluated. With the 20% reduced usage of WF2000 compared to PNS type-admixture, workability was considerably improved due to high water-reducing ratio, accelerating effect of concrete setting and accelerant dispersant action, which the product has, under the high temperature. In addition, the development of initial and long-term strengths of PHC plies was predominant. For WF2000, it is also possible to correspond with the change of original materials and environmental conditions since the control of water-reducing and supporting forces is feasible. Accordingly, it was noted that WF2000 is superior for deterioration of production & workability and bad casting problems in summer and the solution of initial strength reduction problem due to the delay of setting in winter.

Durability Performance Evaluation of PolyUrea for Seismic Retrofitting of RC Structures (구조물 내진 보강용 폴리우레아의 내구 성능 평가)

  • Cho, Chul-Min;Kim, Jang Jay Ho;Lee, Doo-Sung;Kim, Tae-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental study is needed a reinforcing method for seismic load to apply for RC structures because a lot of earthquakes have frequently happened in the world and those also collapsed infrastructures or damaged human lives. The reinforcing effect of PolyUrea (PU) appeared to be excellent under blast and impact about RC structures. In this study, Stiff Type PolyUrea (STPU) had developed by manipulating the ratio of the components of prepolymer and hardener of PU. And the durability performance evaluation of STPU for deterioration and chemical resistance has been performed. Acid environmental exposure test and ultraviolet (UV) exposure test have been performed as the durability performance evaluation for STPU. Concrete carbonation exposure test and freezing and thawing test for concrete coated with STPU have been performed. The experimental result showed that STPU has high resisting capacity and durability in all tests. Therefore, STPU would be used as seismic reinforcement materials.

Evaluation of Flexural Bond Performance of Hybrid Concrete Repair Materials (하이브리드 콘크리트 보수재료의 휨부착 성능평가)

  • Kim, Gyeong Tae;Kim, Sang Jun;Park, Hong Gi;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.176-181
    • /
    • 2018
  • Concrete structures are degraded physically and chemically due to various reasons after construction. Because the deterioration of concrete structure reduces the service life, reasonable repair and maintenance techniques are needed. Recently, in order to efficiently repair concrete structures, many researches on hybrid repair materials having improved adhesion performance have been carried out actively. In this study, we developed a hybrid repair material containing rapid hardening cement, PVA powder, nylon fiber, and latex to improve adhesion and water-tightness of existing concrete. The compressive strength, drying shrinkage and the adhesion strength test were carried out to evaluate the performance of the repair material. In addition, the flexure bond performance was evaluated before and after repair. From the results, the bending strength was 110% ~ 150% in all specimens except for the specimen containing only the rapid hardening cement, and all the specimens behaved with the existing concrete in the crack pattern generated by the bending strength.

Insulation Aging Characteristic Assessment on the Power cables with the Comparative Analysis Between Destructive and Nondestructive Diagnosis (파괴 및 비파괴진단 비교분석을 통한 케이블 열화특성평가)

  • Yi, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.104-108
    • /
    • 2009
  • The insulation aging characteristics and structural analysis test were performed to analyze the correlations among the insulation deterioration, diagnostic results and the breakdown strength for the underground power cables. From the results of the degree of crosslinking test, hot-oil test etc., it could be confirmed that there were no manufacturing defects in the power cables under test. From the results of the water tree test and chemical structural analysis, it could be confirmed that the aging status of cable under test were very poor, especially for B-Phase and the degree of aging was increased in the orders of A, C and B-phase. From the above results, it could be concluded that the insulation aging characteristic analysis results were well consistent with the diagnostic and breakdown test results, and also confirmed that the diagnostic system under consideration was successful to discriminate the bad cables which is likely to cause cable system failure.

Definition, End-of-life Criterion and Prediction of Service Life for Bridge Maintenance (교량의 유지관리를 위한 사용수명 정의, 종료 기준, 추정)

  • Jeong, Yo-Seok;Kim, Woo-Seok;Lee, Il-Keun;Lee, Jae-Ha;Kim, Jin-Kwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • The present study proposes the definition of service life and the end-of-life criterion for bridge maintenance. Bridges begin to deteriorate as soon as they are put into service. Effective bridge maintenance requires sound understanding of the deterioration mechanism as well as the expected service life. In order to determine the expected service life of a bridge for effective bridge maintenance, it is necessary to have a clear definition of service life and end-of-life. However, service life can be viewed from several perspectives based on literature review. The end of a bridge's life can be also defined by more than one perspective or performance measure. This study presents definition of service life which can be used for bridge maintenance and the end-of life criterion using the performance measure such as a damage score. The regression model can predict an average service life of bridges using the proposed end-of-life criterion.

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.