• 제목/요약/키워드: structural deterioration

검색결과 614건 처리시간 0.015초

Determination of Ratio of Wood Deterioration Using NDT Technique

  • Lee, Jun-Jae;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권3호
    • /
    • pp.33-41
    • /
    • 2004
  • In ancient wooden structures, the mechanical properties of the structural members have been reduced by time-dependent degradations such as fatigue or creep. Also, the external and internal deterioration was caused by environmental condition, fungi, bacteria, or insect, and then reduced the quality of structural members. However, the previous methods for evaluating the deterioration have been mainly depended on the visual inspection. In this study, therefore, ultrasonic stress wave test, accelerometer stress wave test were used to evaluate the deterioration of structural wood members in ancient wooden structures. Based on the results, the quantitative criteria of stress wave transmitted velocity were proposed to evaluate the deterioration of structural member. The proposed criteria were related to the degree of deterioration. In accelerometer stress wave, the criteria of deterioration of wave reciprocal velocity was below 1800 ㎲/m at incipient deterioration (below 12% ratio of deterioration), between 1800 and 2200 ㎲/m at moderate deterioration (12~17%) and above 2200 ㎲/m at severe deterioration (above 17%). The ultrasonic stress wave, the criteria of deterioration were 800 and 950 ㎲/m at below 8% and above 15% of the degree of deterioration respectively.

Effect of cover cracking on reliability of corroded reinforced concrete structures

  • Chen, Hua-Peng;Nepal, Jaya
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.511-519
    • /
    • 2017
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

교육시설(敎育施設)의 리모델링을 위한 구성재료(構成材料)의 노후화(老朽化) 판정기준(判定基準) 작성(作成)(II) - 주요(主要) 구성부재(構造部材)의 노후도(老朽度) 종합판정방법(綜合判定方法) 제시(提示) - (Evaluation Method of Deterioration Grade for Remodeling Old Educational Facilities(II) - Synthetic Judgment Method of Deterioration Grade of Structural Components -)

  • 서치호;최민권;최수경;오세출
    • 교육시설
    • /
    • 제10권5호
    • /
    • pp.15-22
    • /
    • 2003
  • Deterioration of the educational facilities built before 1985 is a serious situation. The purpose of this study is to present the efficient remodeling method of old educational facilities. This paper, part II, presents the systemic and synthetic judgment method of deterioration grade of structural components. Deterioration grade of the whole structural components are judged by synthetic evaluation score which is the total of the score of ten evaluation items. And we added the importance coefficient of the viewpoint of four performance to each evaluation item.

서울지역 건조물 문화재의 구조열화성상에 관한 연구 (A Study on the Structural Deterioration of the Building' Cultural Assets in Seoul)

  • 유혜란;권기혁
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.29-32
    • /
    • 2008
  • Cultural assets are subject to general elements of deterioration due to aging of materials and surrounding conditions over time and these elements do not influence structural safety. However, wood cracking(penetrative), disparity of joints, deformation of structure, damage by insects and ground subsidence as the elements of structural deterioration as well as slanting of building structure caused by composite elements exert serious impact on safety of cultural assets. Therefore, repair must be administered by deciding the appropriate time and investigating the status. However, there are no grounds for making such decisions because investigative data on cultural assets have not been organized analyzed and the results of investigation have not been established as database. There is also lack of objectified bases. Therefore, this study aimed to investigate organize elements of structural deterioration with reference to cultural assets of building structures in Seoul so that to use the results found as the basic data for preservation of cultural assets.

  • PDF

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Patterns of Resistographs for Evaluating Deteriorated Structural Wood Members

  • ;;박문성
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권6호
    • /
    • pp.45-54
    • /
    • 2003
  • The density and strength of wood is affected by degradations and defects, such as voids and knots. Old wooden structures such as traditional cultural properties have been deteriorated by these types of defects. They were evaluated by a visual observation that is difficult to evaluate the inner deterioration in structures. In this study, three nondestructive testing techniques were investigated to detect the wooden structural members. Ultrasonic stress wave tests, drilling resistance tests and visual inspections were used to examine the structural wood members. Patterns of Resistograph using by drilling resistance tests could indicate the features of internal wood such as voids, knots, decay, fungi, and so on. The technique just like as ultrasonic stress wave tests, however, difficult to detect exactly area where small amounts of internal deterioration in logs are. In spite of results of ultrasonic stress wave test, the internal deterioration of wooden structural members could be evaluated by the relationship between ultrasonic stress wave tests and drilling resistance tests.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구 (A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing)

  • 고경택;김도겸;조명석;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

Reliability-based condition assessment of a deteriorated concrete bridge

  • Ghodoosi, Farzad;Bagchi, Ashutosh;Zayed, Tarek;Zaki, Adel R.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.357-369
    • /
    • 2014
  • In the existing bridge management systems, assessment of the structural behavior is based on the results of visual inspections in which corresponding condition states are assigned to individual elements. In this process, limited attention is given to the correlation between bridge elements from structural perspective. Also, the uncertainty of parameters which affect the structural capacity is ignored. A system reliability-based assessment model is potentially an appropriate replacement for the existing procedures. The aim of this research is to evaluate the system reliability of existing conventional Steel-Reinforced bridge decks over time. The developed method utilizes the reliability theory and evaluates the structural safety for such bridges based on their failure mechanisms. System reliability analysis has been applied to simply-supported concrete bridge superstructures designed according to the Canadian Highway Bridge Design Code (CHBDC-S6) and the deterioration pattern is achieved based on the reliability estimates. Finally, the bridge condition index of an old existing bridge in Montreal has been estimated using the developed deterioration pattern. The results obtained from the developed reliability-based deterioration model and from the evaluation done by bridge engineers have been found to be in accordance.