• Title/Summary/Keyword: structural detail

Search Result 794, Processing Time 0.028 seconds

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF

Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy

  • Tay, Roland Yingjie;Lin, Jinjun;Tsang, Siu Hon;McCulloch, Dougal G.;Teo, Edwin Hang Tong
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.217-226
    • /
    • 2016
  • Monolayer hexagonal boron nitride (h-BN) is a phenomenal two-dimensional material; most of its physical properties rival those of graphene because of their structural similarities. This intriguing material has thus spurred scientists and researchers to develop novel synthetic methods to attain scalability for enabling its practical utilization. When probing the growth behaviors and structural characteristics of h-BN, the use of appropriate characterization techniques is important. In this review, we detail the use of scanning and transmission electron microscopies to investigate the atomic configurations of monolayer and bilayer h-BN grown via chemical vapor deposition. These advanced microscopy techniques have been demonstrated to provide intimate insights to the atomic structures of h-BN, which can be interpreted directly or indirectly using known growth mechanisms and existing theoretical calculations. This review provides a collective understanding of the structural characteristics and defects of synthetic h-BN films and facilitates a better perspective toward the development of new and improved synthesis techniques.

Development of Automated Optimum Design Program Considering the Design Details (세부설계사항을 고려한 자동최적설계 프로그램 개발)

  • Chang, Chun Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The primary objective of this paper is to develop optimal algorithms of reinforced concrete frame structural systems by the limit state design(CP 1110) and to look into the possibility of detailed design of these structural systems. The structural formulation is derived on the finite element method. The objective of optimization of a reinforced structure for a specified geometry is mainly to determine the optimum cross-sectional dimensions of concrete and the area of the various sizes of the reinforcement required for each member. In addition to the detail s such as the amount of web reinforcement, cutoff points of longitudinal reinforcedments etc. are also considered as design variables. In this study, the method of "Generalized Reduced Gradient, Rounding and with Neighborhood search" and "the Sequential Linear Programming" are employed as an analytical method of nonlinear optimization.

  • PDF

Annealing Characteristics of Oxygen Free Copper Sheet Processed by Differential Speed Rolling (이주속압연된 무산소동 판재의 어닐링 특성)

  • Lee, Seong-Hee;Yoon, Dae-Jin;Euh, Kwangjun;Kim, Su-Hyun;Han, Seung-Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Annealing characteristics of an oxygen free copper (OFC) processed by differential speed rolling (DSR) were investigated in detail. An OFC sample with a thickness of hum was rolled to 35% reduction at ambient temperature without lubrication, varying the differential speed ratio from 1.0:1 to 2.2:1, and then annealed for 0.5h at various temperatures from 100 to $400^{\circ}C$. Different recrystallization behavior was observed depending on the differential speed ratio, especially in the case of annealing at $200^{\circ}C$ Complete recrystallization occurred in the specimens annealed at temperatures above $250^{\circ}C$ regardless of the differential ratios. The hardness distribution in the thickness direction of the rolled OFC sheets varied depending on the differential speed ratios. These annealing characteristics were explained by the magnitude of shear strain introduced during rolling.

Structural identification of concrete arch dams by ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.227-237
    • /
    • 2013
  • Modal testing, widely accepted and applied method for determining the dynamic characteristics of structures for operational conditions, uses known or unknown vibrations in structures. The method's common applications includes estimation of dynamic characteristics and also damage detection and monitoring of structural performance. In this study, the structural identification of concrete arch dams is determined using ambient vibration tests which is one of the modal testing methods. For the purpose, several ambient vibration tests are conducted to an arch dam. Sensitive accelerometers were placed on the different points of the crest and a gallery of the dam, and signals are collected for the process. Enhanced Frequency Domain Decomposition technique is used for the extraction of natural frequencies, mode shapes and damping ratios. A total of eight natural frequencies are attained by experimentally for each test setup, which ranges between 0-12 Hz. The results obtained from each ambient vibration tests are presented and compared with each other in detail. There is a good agreement between the results for all measurements. However, the theoretical fundamental frequency of Berke Arch Dam is a little different from the experimental.

Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets

  • Hlavicka-Laczak, Lili E.;Kollar, Laszlo P.;Karolyi, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • To investigate numerically the effect of all parameters on the outcome of an aircraft impact into robust engineering structures like nuclear power plant containments is a tedious task. In order to reduce the problem to a manageable size, we propose a single dimensionless parameter, the damage potential, to characterize the main features of the impact. The damage potential, which is the ratio of the initial kinetic energy of the aircraft to the work required to crush it, enables us to find the crucial parameter settings that need to be modelled numerically in detail. We show in this paper that the damage potential is indeed the most important parameter of the impact that determines the time-dependent reaction force when either finite element (FE) modelling or the Riera model is applied. We find that parameters that do not alter the damage potential, like elasticity of the target, are of secondary importance and if parameters are altered in a way that the damage potential remains the same then the course of the impact remains similar. We show, however, that the maximum value of the reaction force can be higher in case of elastic targets than in case of rigid targets due to the vibration of the target. The difference between the Riera and FE model results is also found to depend on the damage potential.

A new principles for implementation and operation of foundations for machines: A review of recent advances

  • Golewski, Grzegorz Ludwik
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.317-327
    • /
    • 2019
  • The aim of this paper is to present the most important issues on the implementation, operation and maintenance of foundation for machines. The article presents the newest solutions both in terms of technology implementation as well as materials used in construction of such structures. Foundations for machines are special building structures used to transfer loads from an operating machine to the subsoil. The purpose of these foundations is not just to transfer loads, but also to reduce vibrations occurring during operation of the machine, i.e. their damping and preventing redistribution to other elements of the building. It should be noted that foundations for machines (particularly foundations for hammers) are the most dynamically loaded building structures. For these reasons, they require precise static and dynamic calculations, accuracy in their implementation and care for them after they have been made. Therefore, the paper in detail present the guidelines regarding: design, construction and maintenance of structures of this type. Furthermore, the most important parameters and characteristics of materials used for the construction of these foundations are described. As a result of the conducted analyzes, it was found that the concrete mix, in foundations for machines, should have a low water/binder ratio. For its execution, it is necessary to use broken aggregates from igneous rocks and binders modified with mineral additives and chemical admixtures. On the other hand, the reinforcement of composites should contain a large amount of structural reinforcement to prevent shrinkage cracks.

Investigation of Dynamic Characteristcs Uninterruptible Power Supply System (UPS) Using Shaking Table Tests (무정전전원장치(UPS)의 진동대 실험 및 동적특성 분석)

  • Lee, Seung-Jae;Kim, Joo-Young;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.129-136
    • /
    • 2019
  • Non-structural elements are vulnerable to earthquake ground motion. In this study, an experimental study for the electrical non-structural element was performed using tri-axial shaking table tests. A 100kVA UPS(Uninterruptible Power Supply system) was used as the test specimen. The test specimen was anchored to the concrete slab using the conventional installation detail. The input acceleration were generated in accordance with ICC-ES AC156 code. Scale factors of the input acceleration with respect to the required response spectrum defined in ICC-ES AC156 were from 25% to 600%. Based on the test results, damage and dynamic characteristics of UPS were evaluated and analyzed including natural frequency, damping ratio, acceleration time history response, dynamic amplification factor and relative displacement.

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Evaluation of Reinforcement Detail Effect on Coupling Beams (연결보의 배근 상세 효과 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • A study was conducted to secure structural performance as well as improve workability by improving the reinforcement details of special shear wall and coupling beams. Based on the specimen in which the existing diagonal bundle reinforcement and shear reinforcement were placed, the specimens replaced with thick diagonal reinforcing bars and the specimens replaced with horizontal reinforcing bars were selected as variables. As a result of the experiment, the specimen, which replaced the existing diagonal reinforcement with a thick-diameter reinforcement, showed a similar behavior to that of the basic specimen, and it was evaluated that it can be applied as an alternative to the details.