• Title/Summary/Keyword: structural degradation

Search Result 804, Processing Time 0.026 seconds

Design for Resonance Avoidance of Mount Through the Modal Analysis (모드해석을 통한 마운트 공진회피 설계)

  • Lee, Jong-Myeong;Yu, Hyeon-Tak;Park, Gyu-Jin;Choi, Hyeon-Cheol;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.481-486
    • /
    • 2015
  • This paper provides how to solve the problems analytically and experimentally that occur for testing the water injection pump under development. First of all, water injection pump, based on shaft system dynamic analysis, is verified by measuring the behavior of the shaft system. After the water injection pump is measured, the structural resonances which can cause excessive noise, degradation the equipment life and malfunction are found. Therefore, by changing the structural design, the reso- nance should be avoided. Application of the design variables to the experimentally resonance avoid- ance is difficult. So analytically, with application of the design variables, the design will be changed with mode analysis using FEM.

Instrumental Analysis of the Human Hair Damaged by Bleaching Treatments - Focused on ATR FT-IRM -

  • Ha, Byung-Jo
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.23-33
    • /
    • 2008
  • The physico-chemical characteristics by bleaching treatments were assessed by several instrumental analyses such as surface morphology, chemical structural change, color change as well as tensile strength. The change of morphological characteristic was observed through scanning electron microscope(SEM). The observation of the fine structure on hair surface by SEM showed the bleached hair had much damaged to hair cuticle, and some of cuticle surface were worn away. To investigate the chemical structural changes in hair keratin, the cross-sections of hair samples were directly analysed using Fourier transform infrared microspectroscopy(FT-IRM). The results showed the cysteic acid S=O band intensity was distinctively increased by performing the bleaching treatment. The cleavage of cystine was appeared to proceed primarily through the sulfur-sulfur (-S-S-) fission whereby cysteic acid was formed as a principal oxidation products. The distribution of amide I band in hair keratin was determined by attenuated total reflectance(ATR) FT-IR mapping image. The results showed that the outer side of hair cortex was more damaged than the inner side of the hair cortex. Also, during chemical bleaching of the hair with alkaline peroxide, the hair was turned to reddish yellow due to the oxidative degradation of eumelanin. This means the eumelanin is more unstable than pheomelanin in chemical oxidation. With bleaching, the tensile strength was also reduced as a results of the chemical oxidation.

Analysis of Viscoplastic Softening Behavior of Concrete under Displacement Control (변위제어하에서 콘크리트의 점소성 연화거동해석)

  • Kim, Sang-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.185-193
    • /
    • 1995
  • The softening behaviors of concrete have been the object of numerous experimental and numerical studies, because the load carrying capacity of cracked concrete structure is not zero. Numerical studies are devoted to the investigation of three-dimensional softening behaviors of concrete on the basis of a viscoplastic theory, which may be able to represent the effects of plasticity and also of rheology. In order to properly describe material behaviors corresponding to different stress levels, two surfaces in stress space are adopted; one is a yield surface, and the other is a failure or bounding surface. When a stress path reaches the failure surface, it is considered that the softening behaviors are initiated as micro-cracks coalesce and are simulated by assuming that the actual strain increments in the post-peak region are less than the equivalent viscoplastic strain increment. The experimental studies and the finite element analyses have been carried out under the displacement control. Numerically simulated results indicate that the model is able to predict the essential characteristics of concrete behaviors such as the non-linearity, stiffness degradation, different behaviors in tension and compression, and specially dilatation under uniaxial compression.

  • PDF

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

Analysis of a Composite Panel with Transverse Matrix Cracks under Bending and Twisting Moments (굽힘 및 비틀림 하중작용시 횡방향 모재균열을 갖는 복합재료 판넬 해석)

  • Park, Jung-Sun;Hur, Hae-Kyu;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.971-980
    • /
    • 1997
  • This study is to investigate the stiffness degradation of a composite laminated panel including transverse matrix cracks subjected to bending and twisting moments. Micromechanics theory on the composite material is derived by introducing crack density. Iterative numerical scheme is developed to calculate the degraded composite stiffness which has nonlinear relation due to the crack density. The finite element method is used for structural analysis of the composite panel. Structural responses of the composite panel are examined for various laminated angles and crack density under the bending and twisting moments. Also, the effect of crack opening and closing is considered in the examination. It is realized that the matrix cracks may cause severe stiffness reduction and should be considered in the composite laminated panel.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

Comparative Performance Evaluation by Winter Apartment Temperature on the Outer Surface of the Insulation (동계 아파트 외표면 온도에 의한 단열성능 비교평가)

  • Park, Jung-Hun;Kim, Bong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.91-100
    • /
    • 2013
  • This research is to measure and analyze the thermal performance of the apartment structure and to evaluate and establish standards of thermal insulation defect in order to make the basic data necessary for determining the degree of the thermal performance degradation and for repairing and reinforcing the exterior wall of the existing apartment. Furthermore, it is to predict the part of occurrence of the thermal bridge and condensation at the apartment building structure. On the other one hand, it is also to analyze the degree of thermal insulation performance according to the standards of thermal insulation and elapsed time, through the analysis by the workability of concrete.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.