• Title/Summary/Keyword: structural damage identification

Search Result 335, Processing Time 0.027 seconds

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

Identification of the Directivity of Structural Damages : Theory and Experiment (구조물 손상의 방향성 규명 : 이론 및 실험)

  • 조경근;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.292-299
    • /
    • 2002
  • In this paper a new damage identification theory is developed in order to identify the locations, severities, and orientations of local damages, all together at a time, by using the frequency response functions measured from damaged plate. Finally, the effects of damage orientation on the vibration responses of a plate are numerically investigated, and the numerically simulated damage identification tests are conducted to verify the present damage identification theory.

  • PDF

Structural Damage Identification by Using Spectral Element Model (스펙트럴요소 모델을 이용한 구조손상규명)

  • 민승규;김정수;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.366-373
    • /
    • 2003
  • This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form to include the nonlinearity of damage magnitudes from the dynamic stiffness equation of motion for a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses for a cantilevered beam with three piece-wise uniform damages.

  • PDF

Multi-swarm fruit fly optimization algorithm for structural damage identification

  • Li, S.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.409-422
    • /
    • 2015
  • In this paper, the Multi-Swarm Fruit Fly Optimization Algorithm (MFOA) is presented for structural damage identification using the first several natural frequencies and mode shapes. We assume damage only leads to the decrease of element stiffness. The differences on natural frequencies and mode shapes of damaged and intact state of a structure are used to establish the objective function, which transforms a damage identification problem into an optimization problem. The effectiveness and accuracy of MFOA are demonstrated by three different structures. Numerical results show that the MFOA has a better capacity for structural damage identification than the original Fruit Fly Optimization Algorithm (FOA) does.

Vibration-Based Damage Identification Scheme for Prestress Concrete Bridges (PS 콘크리트 교량의 진동기초 손상검색체계)

  • 김정태;류연선;조현만;정성오
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.283-290
    • /
    • 1999
  • A practical damage identification scheme for PS concrete bridges via modal testing and system identification (SID) procedures is presented. The potential damage types are classified and the possible approaches which can be implemented into each damage type are designed. Damage identification algorithms are developed on the basis of the SID and modal analysis. The feasibility of the algorithms is verified from experimental tests to detect damage in PS concrete beam structures.

  • PDF

Comparative study on damage identification from Iso-Eigen-Value-Change contours and smeared damage model

  • Lakshmanan, N.;Raghuprasad, B.K.;Gopalakrishnan, N.;Sreekala, R.;Rama Rao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.735-758
    • /
    • 2010
  • The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.

A Damage Identification for Railway Bridges using Static Response (철도교량의 손상도 평가기법 개발에 관한 연구)

  • 최일윤;이준석;이종순;조효남
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1065-1073
    • /
    • 2002
  • A new damage identification technique using static displacement data is developed to assess the structural integrity of bridge structures. In the conventional damage assessment techniques using dynamic response, it is usually difficult to obtain a significant natural frequencies variation from the measured data because the natural frequencies variation is intrinsically not sensitive to the damage of a bridge. In this proposed identification method, the stiffness reduction of the bridges can be estimated using the static displacement data measured periodically and a specific loading test is not required. The static displacement data due to the dead load of the bridge structure can be measured by devices such as a laser displacement sensor. In this study, structural damage is represented by the reduction in the elastic modulus of the element. The damage factor of the element is introduced to estimate the stiffness reduction of the bridge under consideration. Finally, the proposed algorithm is verified using various numerical simulation and compared with other damage identification method. Also, the effect of noise and number of damaged elements on the identification are investigated. The results show that the proposed algorithm is efficient for damage identification of the bridges.

  • PDF

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

Structural damage identification using gravitational search algorithm

  • Liu, J.K.;Wei, Z.T.;Lu, Z.R.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.729-747
    • /
    • 2016
  • This study aims to present a novel optimization algorithm known as gravitational search algorithm (GSA) for structural damage detection. An objective function for damage detection is established based on structural vibration data in frequency domain, i.e., natural frequencies and mode shapes. The feasibility and efficiency of the GSA are testified on three different structures, i.e., a beam, a truss and a plate. Results show that the proposed strategy is efficient for determining the locations and the extents of structural damages using the first several modal data of the structure. Multiple damages cases in different types of structures are studied and good identification results can be obtained. The effect of measurement noise on the identification results is investigated.