• 제목/요약/키워드: structural damage identification

검색결과 341건 처리시간 0.03초

Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure

  • Naseralavi, S.S.;Shojaee, S.;Ahmadi, M.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.839-864
    • /
    • 2016
  • This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference between the recorded acceleration of a real damaged structure and a hypothetical damaged one. This is performed by updating physical parameters (module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate gradient (M-NCG) and modified Broyden-Fletcher-Goldfarb-Shanno algorithm (M-BFGS) separately. These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection problem. Three illustrative test examples are considered to assess the performance of the proposed method. Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of structural damage in presence of noise.

신경망을 이용한 구조물 접합부의 손상도 추정 (Structural Joint Damage Assessment Using Neural Networks)

  • 방은영;이진학;윤정방
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.35-46
    • /
    • 1998
  • 대부분의 손상도 추정법들을 부재의 손상을 해당부재의 평균적인 강성감소로 표현하였다. 본 연구에서는 보다 실제적인 손상도를 추정하기 위하여, 접합부의 손상을 도입하였다. 접합부의 모형화를 위하여 보의 양단에 회전스프링을 추가하였으며, 접합부 손상을 접합부 강성의 감소로 정의하였다. 접합부의 손상도를 계측된 모드벡터를 바탕으로하여, 신경망기법을 추정하였다. 효율적인 훈련패턴을 만들기 위하여 Latin Hypercube Sampling 기법을 도입하였으며, 국부영역에서의 손상도추정을 위하여 부구조법을 도입하였다. 제안된 기법의 효율성을 검증하기 위하여 10층 프레임구조물에 대한 수치해석결과를 이용하였다. 예제해석을 통하여 추정결과가 상당히 정확함을 확인하여, 실제 적용 가능한 방법임을 알수 있었다.

  • PDF

유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석 (Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors)

  • 최형진;백영인;이학은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

BB-BC optimization algorithm for structural damage detection using measured acceleration responses

  • Huang, J.L.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.353-360
    • /
    • 2017
  • This study presents the Big Bang and Big Crunch (BB-BC) optimization algorithm for detection of structure damage in large severity. Local damage is represented by a perturbation in the elemental stiffness parameter of the structural finite element model. A nonlinear objective function is established by minimizing the discrepancies between the measured and calculated acceleration responses (AR) of the structure. The BB-BC algorithm is utilized to solve the objective function, which can localize the damage position and obtain the severity of the damage efficiently. Numerical simulations have been conducted to identify both single and multiple structural damages for beam, plate and European Space Agency Structures. The present approach gives accurate identification results with artificial measurement noise.

Research on damage and identification of mortise-tenon joints stiffness in ancient wooden buildings based on shaking table test

  • Xue, Jianyang;Bai, Fuyu;Qi, Liangjie;Sui, Yan;Zhou, Chaofeng
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.547-556
    • /
    • 2018
  • Based on the shaking table tests of a 1:3.52 scale one-bay and one-story ancient wooden structure, a simplified structural mechanics model was established, and the structural state equation and observation equation were deduced. Under the action of seismic waves, the damage rule of initial stiffness and yield stiffness of the joint was obtained. The force hammer percussion test and finite element calculations were carried out, and the structural response was obtained. Considering the 5% noise disturbance in the laboratory environment, the stiffness parameters of the mortise-tenon joint were identified by the partial least squares of singular value decomposition (PLS-SVD) and the Extended Kalman filter (EKF) method. The results show that dynamic and static cohesion method, PLS-SVD, and EKF method can be used to identify the damage degree of structures, and the stiffness of the mortise-tenon joints under strong earthquakes is reduced step by step. Using the proposed model, the identified error of the initial stiffness is about 0.58%-1.28%, and the error of the yield stiffness is about 0.44%-1.21%. This method has high accuracy and good applicability for identifying the initial stiffness and yield stiffness of the joints. The identification method and research results can provide a reference for monitoring and evaluating actual engineering structures.

Comparison of various structural damage tracking techniques based on experimental data

  • Huang, Hongwei;Yang, Jann N.;Zhou, Li
    • Smart Structures and Systems
    • /
    • 제6권9호
    • /
    • pp.1057-1077
    • /
    • 2010
  • An early detection of structural damages is critical for the decision making of repair and replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has received considerable attention recently. The traditional time-domain analysis techniques, such as the least square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two approaches have been extended to cover the general case where some of the external excitations (inputs) are not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking of structures when some of the acceleration responses are not measured and the external excitations are not available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy, convergence and efficiency, for damage identification of structures based on experimental data obtained through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural damages will be demonstrated and compared.

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.

Damage detection of shear buildings through structural mass-stiffness distribution

  • Liang, Yabin;Li, Dongsheng;Song, Gangbing;Zhan, Chao
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.11-20
    • /
    • 2017
  • For structural damage detection of shear buildings, this paper proposes a new concept using structural element mass-stiffness vector (SEMV) based on special mass and stiffness distribution characteristics. A corresponding damage identification method is developed combining the SEMV with the cross-model cross-mode (CMCM) model updating algorithm. For a shear building, a model is assumed at the beginning based on the building's distribution characteristics. The model is updated into two models corresponding to the healthy and damaged conditions, respectively, using the CMCM method according to the modal parameters of actual structure identified from the measured acceleration signals. Subsequently, the structural SEMV for each condition can be calculated from the updated model using the corresponding stiffness and mass correction factors, and then is utilized to form a new feature vector in which each element is calculated by dividing one element of SEMV in health condition by the corresponding element of SEMV in damage condition. Thus this vector can be viewed as a damage detection feature for its ability to identify the mass or stiffness variation between the healthy and damaged conditions. Finally, a numerical simulation and the laboratory experimental data from a test-bed structure at the Los Alamos National Laboratory were analyzed to verify the effectiveness and reliability of the proposed method. Both simulated and experimental results show that the proposed approach is able to detect the presence of structural mass and stiffness variation and to quantify the level of such changes.

Damage localization and quantification of a truss bridge using PCA and convolutional neural network

  • Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.673-686
    • /
    • 2022
  • Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.

Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses

  • Liu, Lijun;Lei, Ying;He, Mingyu
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.409-424
    • /
    • 2015
  • Structural nonlinearity is a common phenomenon encountered in engineering structures under severe dynamic loading. It is necessary to localize and identify structural nonlinearities using structural dynamic measurements for damage detection and performance evaluation of structures. However, identification of nonlinear structural systems is a difficult task, especially when proper mathematical models for structural nonlinear behaviors are not available. In prior studies on nonparametric identification of nonlinear structures, the locations of structural nonlinearities are usually assumed known and all structural responses are measured. In this paper, an identification algorithm is proposed for locating and identifying model-free structural nonlinearities and systems using incomplete measurements of structural responses. First, equivalent linear structural systems are established and identified by the extended Kalman filter (EKF). The locations of structural nonlinearities are identified. Then, the model-free structural nonlinear restoring forces are approximated by power series polynomial models. The unscented Kalman filter (UKF) is utilized to identify structural nonlinear restoring forces and structural systems. Both numerical simulation examples and experimental test of a multi-story shear building with a MR damper are used to validate the proposed algorithm.