• Title/Summary/Keyword: structural connection

Search Result 1,340, Processing Time 0.028 seconds

Further study on improvement on strain concentration in through-diaphragm connection

  • Qin, Ying;Zhang, Jingchen;Shi, Peng;Chen, Yifu;Xu, Yaohan;Shi, Zuozheng
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Hollow structural section (HSS) columns have been increasingly popular due to their structural and architectural merits. However, practical difficulty lies in developing proper connections. The through-diaphragm connections are considered as suitable connection type that is widely adopted in Asian countries. However, the stress concentration occurs at the location connecting through-diaphragm and steel beam. Furthermore, the actual load path from the beam flange is not uniformly transferred to the HSS column as conventionally assumed. In this paper, tensile tests were further conducted on three additional specimens with beam flange plate to evaluate the load versus displacement response. The load-displacement curves, yield and ultimate capacity, ductility ratio were obtained. Furthermore, the strain development at different loading levels was discussed comprehensively. It is shown that the studied connection configuration significantly reduces the stress concentration. Meanwhile, simplified trilinear load-displacement analytical model for specimen under tensile load was presented. Good agreement was found between the theoretical and experimental results.

A Basic Research for Connection Type of Green Frame (Green Frame 접합방식 기초연구)

  • Kim, Keun-Ho;Joo, Jin-Kyu;Lim, Chae-yeon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.171-172
    • /
    • 2011
  • Green column and green beam, key structural members of green frame, have the characteristics of post-lintel structure, thanks to the steel frame in the connection, enabling prompt and precise installation. The connection of green frame can be divided into 4 types, depending on its shape, and each type is associated with different characteristics and construction methods. Notably, as the connection between green columns have differing types and sequences of work, subject to the connection method in use, a connection method optimized for relevant site conditions need to be selected. Therefore, this study analyzed pros and cons of 4 different types of green frame connection methods. The results set forth herein will provide basic data for subsequent studies to comparatively analyze the performance and constructibility of different green frame connection methods.

  • PDF

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.

Test Result on Embedded Steel Column-to-Foundation Connection for Modular Unit Structural System (유닛 모듈러 기둥 매입형 기초 접합부에 대한 실험 연구)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.537-547
    • /
    • 2014
  • A steel modular unit structural system has been used increasingly for mid and high-rise buildings, since the building can be easily constructed by assembling the pre-made modular unit structures. For this structural system, each modular unit structures have to be properly connected to the foundation to transfer the axial force and the bending moment that are generated from external load to the ground. In this study, a new type of the embedded steel column-to-foundation connection was proposed, and its flexural behavior was evaluated through a series of experimental study. Five full scale specimens for the proposed connections were constructed and tested. The effect of the main parameters that affect the flexural behavior of the proposed connection, such as embedment length and shape of end plate, were studied. From the results, it was found that the flexural stiffness of the proposed connection was higher than that of the semi-rigid connection for all test specimens, and 200 mm of embedment length was proper for the given test specimens in this study.

Structural Performance Evaluation of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column Connection Details (내진 각형강관 기둥-H형강 보 접합상세의 구조성능평가)

  • Jang, Bo-Ra;Shim, Hyun-Ju;Kim, Yong-Ick;Chung, Jin-An;Oh, Young-Suk;Kim, Sang-Seup;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The objective of this paper is to examine the structural performance of steel moment-resisting frames on the various connection details of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column connections. Although compared to an H-shaped steel tube, a rectangular steel tube has many advantages and is more efficient, its application is limited due to the lack of experience in using it and the connection details. Existing steel moment connections using the rectangular steel tube are mainly used through plate diaphragms. The processing of construction of the rectangular steel tube is so complicated that it is hard to apply it in the field. In this study, the structural performance and the earthquake capacity of the connection details that do not cut the rectangular steel tube column were investigated. A comparative analysis of the strength, rigidity, and energy absorption capacity of the welded connection details using an end-plate and a haunch was also performed.

Constructability Analysis of Green Columns at the Low Bending Moment Zone

  • Lee, Sung-Ho;Park, Jun-Young;Lim, Chae-Yeon;Kim, Sun-Kuk
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.4
    • /
    • pp.12-19
    • /
    • 2013
  • Green Frame is an environmentally friendly column-beam system composed of composite PC members that can increase buildings' life spans while reducing resource consumption. Typically, connections of PC and RC columns occur at the boundaries of each floor, which is at the upper section of slabs, causing the boundary of each floor to generate the maximum moment. Although it is not optimal in terms of structural safety to connect members at a location where the moment is high, this approach is highly adopted due to its constructability. We propose that a superior approach that employs the concept of connecting columns at the low bending moment zone can be applied to quickly and safely install green columns, the main structural members of Green Frame. Connection of green columns at the low bending moment zone can be classified into three techniques, depending on the method of reinforcing the joints, which have different connection characteristics and construction methods. Research is needed to compare the features of each method of reinforcing the joints so that the most appropriate column connection method can be chosen for the site conditions. This study aims to confirm the structural safety of the connection component at the low bending moment zone and to compare and analyze the construction duration, unit price, quality and safety performance of each column connection method. The study results are anticipated to activate the use of composite precast concrete and to be used as development data in the future.

Design of a Steel Structural Building Using Double Split Tee Connections without Shear Tabs (전단탭이 없는 상·하부 스플릿 티 접합부를 적용한 강구조물의 설계)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2016
  • Double split tee connection has various strength, stiffness, and energy dissipation capacity according to changes of thickness of T-stub flange and gauge distance, number, and diameter of high-strength bolt. If the double split tee connection is applied to a low- or medium-rise steel structure, a shear tab can't be applied for supporting shear force because of geometrical limitation. So it is required to propose details of improved double split tee connection to support shear force as well as flexural force. This research was performed to see if enough rotational stiffness is found when the double split tee connection without shear tab which was obtained through analytic and experimental researches by Yang et al. is applied to a low- or medium-rise steel structure. Also, it was seen if the low- or medium-rise steel structure having double split tee connection without shear tab has safe structural behavior, as well as material saving effect.

The Numerical Study on Capacity Evaluation of Exposed Steel Column-Base Plate Connection (노출형 철골기둥-베이스 플레이트 접합부의 내력평가를 위한 수치적 연구)

  • Lee, Kwang-Ho;You, Young-Chan;Choi, Ki-Sun;Koo, Hye-Jin;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.26-34
    • /
    • 2016
  • The failure modes of steel column-base plate connection arranged on the basis of AISC Design Guide-#1 and -#10 are base plate tension and compression side flexural yielding, yielding, pull-out and shear failure of anchor rod, concrete crushing in concrete footing and steel column yielding. The bending moment capacity and failure mode in this connection are predicted using limit-state function and we compare these results and test result. In the case that thickness of base plate is relatively thick, bending moment capacity and failure mode in steel column-base plate connection accurately predicted. But in the case that thickness of base plate is relatively thin and axial force do not exist, prediction of failure mode in this connection is somewhat inaccurate.

Strength Evaluation of Bolt Arrangement in PFRP Bolted Connection with 2 Bolts (2개의 볼트를 가지는 PFRP 볼트연결부의 볼트배치에 따른 강도평가)

  • Lee, Young-Geun;Kim, Sun-Hee;Won, Yong-Seok;Cheon, Jin-Uk;Shin, Kwang-Yeoul;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.17-22
    • /
    • 2014
  • Fiber reinforced plastic (FRP) structural shapes are readily available in civil engineering applications. Among many manufacturing techniques used for FRP structural shapes, pultrusion process is one of the most widely used techniques in civil engineering applications. Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymeric plastic structural shapes with constant cross-section. Pultruded composites are attractive for structural applications because of their continuous mass production with excellent mechanical properties. This paper presents the results of investigations pertaining to the bolted connection with two bolts for the pultruded FRP (PFRP) structural members. PFRP bolted connection tests were conducted with end distance to bolt diameter ratio ($e_1/d_b$) and two types of bolt pattern such as horizontal (Pattern A) and vertical arrangement (Pattern B). As a result, it is found that the $e_1/d_b$ is recommended as the ratio of 4. In addition, it is also found that the bearing strengths at failure of the Pattern A and Pattern B have a similar value.