• 제목/요약/키워드: structural connection

검색결과 1,347건 처리시간 0.03초

루프형 낙성방지안전시설의 구조적 안전성 검토 연구 (Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System)

  • 박철우;이학용
    • 한국안전학회지
    • /
    • 제24권3호
    • /
    • pp.47-53
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from falling rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed numerical modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

신경망을 이용한 구조물 접합부의 손상도 추정 (Structural Joint Damage Assessment using Neural Networks)

  • 방은영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.131-138
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks. The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

가도용 착탈조립식 복합소재 리그매트의 구조거동 분석 (Structural Behaviour of Composite Rigmats with Snap-fit connection)

  • 이성우;홍기증;조남훈;김인태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.533-538
    • /
    • 2007
  • Since glass-fiber reinforced composite decks have high-strength, light-weight and high durability, many researches on the composite decks for bridges are currently performed and many composite decks are developed. Some of the developed composite decks can be applied as rigmats for temporary roads such as oil developing temporary roads. In this paper, a composite deck for rigmat is developed and studied. Structural behavior of the developed composite deck for rigmat is verified by both analysis and experiment.

  • PDF

SRC형 TEC-BEAM과 RC기둥 접합부 구조적 거동의 실험적 평가 (Experimental Evalution of Structural Behavior on SRC type TEC-BEAM to RC Column Connection)

  • 주영규;김도현;정광량;김상대
    • 한국강구조학회 논문집
    • /
    • 제14권3호
    • /
    • pp.463-470
    • /
    • 2002
  • TEC-BEAM System은 구조용 CT형강, PC 콘크리트 그리고 현장타설콘크리트 슬래브로 이루어진 합성보이다. 이 시스템은 단순보에 대한 휨 및 전단실험을 수행하였고 우수한 거동을 보였다. 그러나 현장적용을 위해서는 TEC-BEAM과 RC 기둥 강접합 상세개발이 필요하다. 이 접합부는 TEC-BEAM의 하부에 발생하는 힘을 기둥에 전달하기 위한 매캐니즘을 발생해야만 한다. 그래서 TEC-BEAM의 단면이 증대되어 TEC-BEAM 플랜지 하부로 철근이 배근되는 접합부를 개발하였다. 본 논문에서는 제안된 시스템의 구조적 성능 평가를 위해 2개의 실험체에 대하여 실험하였다. 실험변수는 철근의 정착길이 즉, 증대된 단면의 길이이며, 실험결과 제안된 시스템은 우수한 접합부를 구조 성능을 가지고 있음을 확인할 수 있다.

Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections

  • Saravanan, M.;Arul Jayachandran, S.;Marimuthu, V.;Prabha, P.
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.381-395
    • /
    • 2009
  • This paper presents the details of an advanced Finite Element (FE) analysis of a plane steel portal frame with semi-rigid beam-to-column connections subjected cyclic loading. In spite of several component models on cyclic behaviour of connections presented in the literature, works on numerical investigations on cyclic behaviour of full scale frames are rather scarce. This paper presents the evolution of an FE model which deals comprehensively with the issues related to cyclic behaviour of full scale steel frames using ABAQUS software. In the material modeling, combined kinematic/isotropic hardening model and isotropic hardening model along with Von Mises criteria are used. Connection non-linearity is also considered in the analysis. The bolt slip which happens in friction grip connection is modeled. The bolt load variation during loading, which is a pivotal issue in reality, has been taken care in the present model. This aspect, according to the knowledge of the authors, has been first time reported in the literature. The numerically predicted results using the methodology evolved in the present study, for the cyclic behaviour of a cantilever beam and a rigid frame, are validated with experimental results available in the literature. The moment-rotation and deflection responses of the evolved model, match well with experimental results. This proves that the methodology for evolving the steel frame and connection model presented in this paper is closer to real frame behaviour as evident from the good comparison and hence paves the way for further parametric studies on cyclic behaviour of flexibly connected frames.

반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 - (Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse -)

  • 이상익;이종혁;정영준;김동수;서병훈;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.