• Title/Summary/Keyword: structural concept

Search Result 1,660, Processing Time 0.027 seconds

OPTIMAL VIBRATION CONTROL OF LARGE STRUCTURES (대형 구조물의 최적 진동제어)

  • 윤정방;김상범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.156-161
    • /
    • 1992
  • Over the past twenty years, the concept of structural control has been investigated for the application to large civil engineering structures. At the early years, passive control systems, such as tuned mass damper(TMD) and tuned liquid mass bamper(TLD), have been utilized to reduce the wind induced vibrations of tall buildings, decks and pylons of long-span bridges. More recently, the active control concept has been applied to reducing the structural vibration and increasing the human comfortness in tall buildings during strong wind. In this study, the effectiveness of the active tuned mass damper(ATMD) has been investigated for reducing vibration of large structures during strong earthquake. Stochastic optimal control theory has been employed. Example analyses are carried out through analytical simulation studies.

  • PDF

Robust Design of Structural and Mechanical Systems using Concept of Allowable Load Set (허용하중집합 개념을 이용한 기계/구조 시스템의 강건 설계)

  • Kwak, Byung-Man
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.333-338
    • /
    • 2007
  • The concept of "Allowable Load Set (ALS)" introduced by the author allows an easy understanding of load and strength characteristics of a structure in relation to its integrity under uncertainties. Two criteria of safety are introduced: A relative safety index denotes the distance to the boundary of the ALS and a normalized safety index is a distance in terms of functional value. They have been utilized in several examples, including multi-body mechanical systems such as a biomechanical system. Both formulations amount to robust designs in the sense that designs most insensitive to uncertainties are obtained in the context of newly defined safety indices, without using any input probability information.

  • PDF

Probabilistic Finite Element Analysis of Plane Frame (평면 FRAME 구조물의 확률유한요소 해석)

  • 양영순;김지호
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 1989
  • In order to take account of the statistical properties of random variables used in the structural analysis, the conventional approach usually adopts the safety factor based on past experiences for the qualitative assessment of structural safety problem. Recently, new approach based on the probabilistic concept has been applied to the assessment of structural safety in order to circumvent the difficulties of the conventional approach in choosing the appropriate safety factor. Thus, computer program called "Probabilistic finite element method" is developed by incorporating the probabilistic concept into the conventional matrix method in order to investigate the effects of the random variables on the final output of the structural analysis. From the comparison of some examples, it can be concluded that the PFEM developed in this study deals consistently with the uncertainty of random variables and provides the rational tool for the assessment of structural safety of plane frame.

  • PDF

Structural Design and Cost Evaluation of Double Hull Bulk Carrier (이중선체 벌크화물선의 선체구조설계 및 경제성 검토)

  • Song, H.C.;Yum, J.S.;Kim, B.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • After many casualties of conventional bulk carriers in recent years, a double hull bulk carrier was proposed to enhance the structural safety of a side shell and a transverse bulkhead. In this paper, two alternative structural designs of a double hull bulk carrier were carried out based on the Lloyd's rule. One has the double sided hull with longitudinal stiffeners and the other has that with a girder. The final structural design was examined in comparison with an existing single hull bulk carrier from the viewpoints of cargo hold capacity and the increases of weight and construction cost. Generally, the construction cost of a ship consists of the costs of material, labor and overhead cost. But, in this study, the relative construction cost concept was introduced to compare the economical validity more precisely. In this concept, fixed overhead cost is excluded in the assessment of construction cost, and only the variable overhead cost is added up to labor cost. As the result of this study, a double hull bulk carrier can be constructed within 1% increase of weight and construction cost.

  • PDF

Consideration of the Structural Strength of High Speed Aluminum Planning Boat Plate Member (고속 경구조선 알루미늄 판부재의 구조강도 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In order to establish a design guide for the bottom plate structure of a 4.3 ton aluminum planning boat, the feasibilities of bottom plate scantling of the ship are investigated based on the results of structural strength analysis and a simple equation and evaluation system are developed for initial structural design purposes. This study consists of 5 steps: First, the background, necessity, and purpose of this study are explained briefly, Second, the principal dimensions of this ship, the position of the considered bottom plate members and material characteristics are introduced. Third, the equivalent design pressure concept is introduced and evaluated based on experience and experimental data. Fourth, the strength of bottom plate members are examined using elasto-plastic nonlinear structural analysis, and response levels and several boundary conditions are reviewed based on the analysis results. Finally, in order to suggest design guides in respect to the ship's structural design, a simple design equation and evaluation system for bottom plate members are suggested for boats in the 4.3 ton aluminumboat range through the introduction of safety factorsbased on the ultimate design pressure concept.

A design concept on object database of measurement data for building a safety management network of road bridges (도로 교량의 안전관리 네트워크 구축을 위한 계측자료의 객체 데이터베이스 설계 개념)

  • Park, Sang-Il;An, Hyun-Jung;Kim, Hoy-Jin;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.518-523
    • /
    • 2008
  • In this study, we analyzed applicability of object database, designed the concept model based on object-oriented idea for measurement data management, and applied the design model to object database. The concept model composes three sub models Infrastructure managing information model, Infrastructure measurement data model, and Measurement unit model. The process to expand measurement data of new type was executed easily without changing database schema in object database. The process to expand measurement data of new type was executed easily without changing database schema in object database. Therefore, applicability of new technology to infrastructures for building a safety management network of road bridges could be increased with object database system.

  • PDF

Reliability and Safety Analysis of Structure System of Retaining Walls (옹벽구조시스템의 신뢰성 및 안전도 해석)

  • Jung, Chul-Won;Yun, Boung-Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.223-234
    • /
    • 1998
  • In this study, an attempt is made to apply the concept of fuzzy-bayesian theory to the integrity assessment of structure system, and uncertainty states are represented in terms of fuzzy sets which define several linguistic variables such as "very good", "good", "average", "poor", "very poor", etc. Especially, the concept of fuzzy conditional probability aids to derive a new reliability analysis which includes the subjective assessment of engineers without introducing any additional correction factors. The fuzzy concept are also used as reliability indexes for the condition assessment based on the proposed models, the proposed fuzzy theory-based approach with the results of PEM and AFOSM are applied to retaining wall.

  • PDF

Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept

  • Afefy, Hamdy M.;El-Tony, El-Tony M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.393-406
    • /
    • 2016
  • Axially loaded reinforced concrete columns are hardly exist in practice due to the development of some bending moments. These moments could be produced by gravity loads or the lateral loads. First, the current paper presents a detailed analysis on the overall structural behavior of 15 eccentrically loaded columns as well as one concentrically loaded control one. Columns bent in either single curvature or double curvature modes are tested experimentally up to failure under the effect of different end eccentricities combinations. Three end eccentricities ratio were studied, namely, 0.1b, 0.3b and 0.5b, where b is the column width. Second, an expression correlated the decay in the normalized axial capacity of the column and the acting end eccentricities was developed based on the experimental results and then verified against the available formula. Third, based on the equivalent column concept, the equivalent pin-ended columns were obtained for columns bent in either single or double curvature modes. And then, the effect of end eccentricity ratio was correlated to the equivalent column length. Finally, a simplified design procedure was proposed for eccentrically loaded braced column by transferring it to an equivalent axially loaded pin-ended slender column. The results of the proposed design procedure showed comparable results against the results of the ACI 318-14 code.

DESIGN STUDY OF AN IHX SUPPORT STRUCTURE FOR A POOL-TYPE SODIUM-COOLED FAST REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1323-1332
    • /
    • 2009
  • The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity.

Ultimate Strenth Behaviour for Perforated Stiffened Panels under Longitudinal Compressive Load (종방향 압축하중을 받는 선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Park Joo-Shin;Lee Kye-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.592-600
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc.. Because cutout's existence grow up in this place, and elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, md, reasonable buckling strength about stiffened perforated plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method

  • PDF