• Title/Summary/Keyword: structural characteristic

Search Result 1,396, Processing Time 0.032 seconds

The Behavior Characteristic and Buckling Strength of Stiffening-Girder of Cable stayed bridge according to Pylon's shape and Flexure Stiffness (주탑형상 및 강성이 사장교의 거동 및 주형좌굴에 미치는 영향)

  • Choe Hak-Ze;Chae Gyu-Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.759-763
    • /
    • 2006
  • Cable Stayed Bridge is mainly composed of three element. Composed element are cable. stiffening girder and Pylon. The characteristic of bridge's behavior depend on these three element's relative stiffness, shape and system of bridge. The purpose of this paper is to exame the characteristic of bridge's behavior and buckling strength of stiffening girder according to shape and flexure stiffness of pylon

  • PDF

An ESED method for investigating seismic behavior of single-layer spherical reticulated shells

  • Zhang, Ming;Zhou, Guangchun;Huang, Yanxia;Zhi, Xudong;Zhang, De-Yi
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.455-464
    • /
    • 2017
  • This paper develops a new method for analyzing the structural seismic behavior of single-layer reticulated shells based on exponential strain energy density (ESED). The ESED method reveals a characteristic point from a relationship between ESED sum and peak seismic acceleration. Then, the characteristic point leads to an updated concept of structural failure and an ESED-based criterion for predicting structural failure load. Subsequently, the ESED-based criterion and the characteristic point are verified through numerical analysis of typical single-layer reticulated shells with different configurations and a shaking table test of the scale shell model. Finally, discussions further verify the rationality and application of the ESED-based criterion. The ESED method might open a new way of structural analysis and the ESED-based criterion might indicate a prospect for a unified criterion for predicting seismic failure loads of various structures.

Identification of Structural Characteristic Matrices of Steel Bar by Genetic Algorithm (유전알고리즘에 의한 강봉의 구조특성행렬 산출법)

  • Park, S.C.;Je, H.K.;Yi, G.J.;Park, Y.B.;Park, K.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.946-952
    • /
    • 2010
  • A method for the identification of structural characteristic parameters of a steel bar in the matrices form such as stiffness matrices and mass matrices from frequency response function(FRF) by genetic algorithm is proposed. As the method is based on the finite element method(FEM), the obtained matrices have perfect physical meanings if the FRFs got from the analysis and the FRFs from the experiments were well coincident each other. The identified characteristic matrices from the FRFs with maximun 40 % of random errors by the genetic algorithm are coincident with the characteristic matrices from exact FEM FRFs well each other. The fitted element diameters by using only 2 points experimental FRFs are similar to the actual diameters of the bar. The fitted FRFs are good accordance with the experimental FRFs on the graphs. FRFs of the rest 9 points not used for calculating could be fitted even well.

Structural Characteristic Analysis of a Centerless Grinding Machine with Concrete Bed (콘크리트 베드를 이용한 무심연삭기의 구조특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces

  • PDF

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-ll;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

A Study on Structural Integrity and Dynamic Characteristic of Inertial Load Test Equipment for Performance Test of Railway Vehicle Propulsion Control System (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to its application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and the dynamic characteristic was evaluated using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2 on the bearing part under combined load. Also, the structural stability of flywheel according to dynamic simulation was secured by the maximum oscillation displacement within 0.83mm.

Segmentation of region strings using connection-characteristic function (연결특성함수를 이용한 문서화상에서의 영역 분리와 문자열 추출)

  • 김석태;이대원;박찬용;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2531-2542
    • /
    • 1997
  • This paper describes a method for region segmentation and string extractionin documents which are mixed with text, graphic and picture images by the use of the structural characteristic of connceted components. In segmentation of non-text regionas, with connection-characteristic functions which are made by structural characteristic of connected components, segmentation process is progressed. In the string extraction, first we organize basic-unit-region of which vertical and horizontal length are 1/4 of average length of connection components. Second, by merging the basic-unit-regions one other that have smaller values than a given connection intensity threshold. Third, by linking the word blocks with similar block anagles, initial strings are cresed. Finally the whold strings are generated by merging remaining word blocks whose angles are not decided, if their height and prosition are similar to the initial strings. This method can extract strings that are neither horizontal nor of various character sizes. Through computer exteriments with different style documents, we have shown that the feasibility of our method successes.

  • PDF

Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae;Cho, Sun-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1008-1013
    • /
    • 2003
  • This paper concerns the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system consisted of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

  • PDF

Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석)

  • Kim, Seok-Il;Park, Chun-Hong;Cho, Soon-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.