• Title/Summary/Keyword: structural analysis and design

Search Result 6,894, Processing Time 0.033 seconds

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter (헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Hwang, In-Hee;Kim, Tae-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.

Effects of the Flexibility on the Structural Responses of a Tension Leg Platform (인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향)

  • Lee, Chang-Ho;Lee, Soo-Lyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

Developing a BIM-Based Methodology Framework for Sustainability Analysis of Low Carbon High-Rise Buildings

  • Gan, Vincent J.L.;Li, Nan;Tse, K.T.;Chan, C.M.;Lo, Irene M.C.;Cheng, Jack C.P.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.14-23
    • /
    • 2017
  • In high-density high-rise cities such as Hong Kong, buildings account for nearly 90% of energy consumption and 61% of carbon emissions. Therefore, it is important to study the design of buildings, especially high-rise buildings, to achieve lower carbon emissions in the city. The carbon emissions of a building consist of embodied carbon from the production of construction materials and operational carbon from energy consumption during daily operation (e.g., air-conditioning and lighting). An integrated analysis of both types of carbon emissions can strengthen the design of low carbon buildings, but most of the previous studies concentrated mainly on either embodied or operational carbon. Therefore, the primary objective of this study is to develop a holistic methodology framework considering both embodied and operational carbon, in order to enhance the sustainable design of low carbon high-rise buildings. The framework will be based on the building information modeling (BIM) technology because BIM can be integrated with simulation systems and digital models of different disciplines, thereby enabling a holistic design and assessment of low carbon buildings. Structural analysis program is first coupled with BIM to validate the structural performance of a building design. The amounts of construction materials and embodied carbon are then quantified by a BIM-based program using the Dynamo programming interface. Operational carbon is quantified by energy simulation software based on the green building extensible Markup Language (gbXML) file from BIM. Computational fluid dynamics (CFD) will be applied to analyze the ambient wind effect on indoor temperature and operational carbon. The BIM-based framework serves as a decision support tool to compare and explore more environmentally-sustainable design options to help reduce the carbon emissions in buildings.

  • PDF

Design and Fabrication of Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 설계 및 제작)

  • 이성우;이선구;송충한;박성용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.241-248
    • /
    • 2002
  • Due to many advantages such as light weight, fast installation, high durability, composite bridge deck is considered to be one of the promissing alternatives to concrete bridge deck. The paper presents procedures of finite element analysis and laminate design for composite bridge deck of triangular shape for DB24 load. After design of the section glass reinforced composite deck tube of double triangular section with 200mm profile was fabricated with pultrusion and the procedure are presented.

  • PDF

Seismic assessment and retrofitting of existing structure based on nonlinear static analysis

  • Ni, Pengpeng
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.631-644
    • /
    • 2014
  • Seismic assessment and retrofitting of existing structure is a complicated work that typically requires more sophisticated analyses than performing a new design. Before the implementation of a Code for seismic design of buildings (GBJ 11-89), not enough attention has been paid on seismic performance of structures and a great part of the existing reinforced concrete structures built in China have been poorly designed according to the new version of the same code (GB 50011-2010). This paper presents a case study of seismic assessment of a non-seismically designed reinforced concrete building in China. The structural responses are evaluated using the nonlinear static procedure (the so-called pushover analysis), which requires its introduction within a process that allows the estimation of the demand, against which the capacity is then compared with. The capacity of all structural members can be determined following the design code. Based on the structural performance, suitable retrofitting strategies are selected and implemented to the existing system. The retrofitted structure is analyzed again to check the effectiveness of the rehabilitation. Different types of retrofitting strategy are discussed and classified according to their complexity and benefits. Finally, a proper intervention methodology is utilized to upgrade this typical low-rise non-ductile building.

A Study on Changes in the Relationship of Spaces with a New Structural Concept of Body (새로운 몸의 구조적 개념에 따른 공간의 관계성 변화에 관한 연구)

  • Lee, Jong-Se;Kim, Joo-Yun
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.1 s.60
    • /
    • pp.48-55
    • /
    • 2007
  • Proceedings in a new field of sciences and technologies like genetic engineering challenge to conventional concepts. It demonstrates a certain disappearance in conventional concepts that dominants our perceptions, such as organic, mechanical, and dichotomic concept of informative materials, and that is to be extended as a potential possibility. Then, what is a new space where our bodies that feel and cherish in their mind should live in these days as well as it makes senses by itself and should affect the principle that makes worlds? In addition, this study proposes a frame in the analysis in order to understand a section of modern designs with the question of 'what is the change in the relationship between relative structures in spaces and objects from a design point of view according to new structural concepts of body?' The major point of this analysis can be realized based on the assumption of the extension of the characteristics in the change of structural relationship in the aspect of post structuralism that includes non-structuralized relationship represented in modern philosophy, arts, and architectural works. Then, it can be accomplished as positive ideas in the foundation of space designs in future including the understand of 'new structural relationship' that can't be expressed as rationality and causal sequence by considering how the experiment conducted using several topics on body can be projected onto spaces through the process applied in the experiment.

Structural and Vibration Analysis of On-shore Drilling System Consisting of Shale Shaker (시추용 육상 드릴링 시스템의 셰일 쉐이커 구조 및 진동해석)

  • Ban, Im-jun;Lim, Chae-og;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1033-1042
    • /
    • 2020
  • Shale shaker which is one of the mud circulation systems is composed of a basket, a vibrator and a screen. Its purpose of a shale shaker is to induce drilling fluid to flow through a screen, transport solids across a screen surface, and discharge solids off the end of the screen. The new shale shaker for the on-shore drilling system is designed to be smaller than the original shale shaker which has the same capacity with the new on to enable to transport and to operate on the trailer. In this study, structural and vibrational analysis of shale shaker was carried out to evaluate the appropriateness of the design in terms of the structural stability.

A Development of Automated Design and Structural Analysis Aided-Program based on GUI environment for Aluminum Extrusion Carbody Structures of Railway Vehicle for Design Engineers (설계자를 위한 GUI 환경기반 알루미늄 압출재 철도차량 차체구조물의 자동화 설계 및 구조해석 지원 프로그램 개발)

  • Kim, Jun-Hwan;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Young-Ju
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.323-328
    • /
    • 2012
  • The purpose of this study is to develop automated structural design and analysis aided-program of aluminum extrusion carbody structures for railway vehicle. This developed program is called "AUTO-RAP" and could perform simultaneously structural design and verification for railway carbody structures made of aluminum extrusion independent of expertise and experience of design engineers. Design engineers are able to conduct the knowledge-based design by providing database of existing aluminum extrusion or user-defined function. The design verification is automatically programmed to evaluate its structural integrity according to Korean Railway Safety Law or Urban Transit Safety Law. In addition, this program could automatically generate an executable file of various commercial finite element programs such as ANSYS and ABAQUS and CAD files such as .stp and .iges by GUI environment applications using MFC(Microsoft Foundation Classes). In conclusion, it is expected to contribute to reduce product design cost and time of carbody structures aluminum extrusions in railway industry.

Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method (3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석)

  • Kim, Sung-Hee;Hong, Suk-Yoon;Kil, Hyun-Gwon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).