• Title/Summary/Keyword: structural acceleration

Search Result 1,111, Processing Time 0.026 seconds

Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses

  • Sharifi, Behroozeh;Nouri, Gholamreza;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.

Vibration Analysis of Gearbox for Agricultural UTV using a Reduced-Order Model (축소 모델 기법을 이용한 농업용 전동식 동력운반차 감속기의 진동 분석)

  • Kim, Beom-Soo;Cho, Seung-Je;Shin, In-Kyung;Chung, Woo-Jin;Han, Hyun-Woo;Kim, Ji-Tae;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.8-17
    • /
    • 2019
  • In this study, a model reduction technique was used to develop a precise noise and vibration prediction model for the individual components of a driveline system. The dynamic reduced-order model generated by the Craig-Bampton method was applied to perform dynamic analysis of an electric agricultural power cart. The natural frequency and acceleration response results were analyzed according to the different number of dominant sub-structural modes contained in the reduced-order models. Through the analysis results, it was confirmed that a sufficient number of dominant sub-structures to satisfy the operating conditions should be selected to construct an optimal reduced-order model.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

The tap-scan method for damage detection of bridge structures

  • Xiang, Zhihai;Dai, Xiaowei;Zhang, Yao;Lu, Qiuhai
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-191
    • /
    • 2010
  • Damage detection plays a very important role to the maintenance of bridge structures. Traditional damage detection methods are usually based on structural dynamic properties, which are acquired from pre-installed sensors on the bridge. This is not only time-consuming and costly, but also suffers from poor sensitivity to damage if only natural frequencies and mode shapes are concerned in a noisy environment. Recently, the idea of using the dynamic responses of a passing vehicle shows a convenient and economical way for damage detection of bridge structures. Inspired by this new idea and the well-established tap test in the field of non-destructive testing, this paper proposes a new method for obtaining the damage information through the acceleration of a passing vehicle enhanced by a tapping device. Since no finger-print is required of the intact structure, this method can be easily implemented in practice. The logistics of this method is illustrated by a vehicle-bridge interaction model, along with the sensitivity analysis presented in detail. The validity of the method is proved by some numerical examples, and remarks are given concerning the potential implementation of the method as well as the directions for future research.

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.81-94
    • /
    • 2009
  • A vibration-impedance-based monitoring method is proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm using the change in frequency responses is formulated to detect the occurrence of damage in PSC girders. Secondly, a local damage detection algorithm using the change in electro-mechanical impedance features is selected to identify the prestress-loss in tendon and anchoring members. Thirdly, a prestress-loss prediction algorithm using the change in natural frequencies is selected to estimate the extent of prestress-loss in PSC girders. Finally, the feasibility of the proposed method is experimentally evaluated on a scaled PSC girder model for which acceleration responses and electro-mechanical impedances were measured for several damage scenarios of prestress-loss.

Experimental study on high gravity dam strengthened with reinforcement for seismic resistance on shaking table

  • Wang, Mingming;Chen, Jianyun;Fan, Shuli;Lv, Shaolan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.663-683
    • /
    • 2014
  • In order to study the dynamic failure mechanism and aseismic measure for high concrete gravity dam under earthquake, the comparative models experiment on the shaking table was conducted to investigate the dynamic damage response of concrete gravity dam with and without the presence of reinforcement and evaluate the effectiveness of the strengthening measure. A new model concrete was proposed and applied for maintaining similitude with the prototype. A kind of extra fine wires as a substitute for rebar was embedded in four-points bending specimens of the model concrete to make of reinforced model concrete. The simulation of reinforcement concrete of the weak zones of high dam by the reinforced model concrete meets the similitude requirements. A tank filled with water is mounted at the upstream of the dam models to simulate the reservoir. The Peak Ground Acceleration (PGA) that induces the first tensile crack at the head of dam is applied as the basic index for estimating the overload capacity of high concrete dams. For the two model dams with and without strengthening tested, vulnerable parts of them are the necks near the crests. The results also indicate that the reinforcement is beneficial for improving the seismic-resistant capacity of the gravity dam.

Effect of containment reinforcement on the seismic response of box type laterite masonry structures - an analytical evaluation

  • Unnikrishnan, Sujatha;Narasimhan, Mattur C.;Venkataramana, Katta
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.67-81
    • /
    • 2013
  • Laterite blocks are used for construction of masonry walls since ages in the South-western coastal areas of India. The south-west coastal areas of India lie in zone III of seismic zonation map of Indian code IS 1893-2002. In spite of the fact that laterite is the most favored masonry material in these regions of India, the structural performance of laterite masonry has not been systematically investigated. Again there are no previous studies addressing, in detail, the seismic performance of laterite masonry buildings. Now that these areas are becoming more and more important from point of view of trade and commerce, there is a need for a detailed research on the seismic response of laterite masonry structures located in these areas. The present paper reports the results of such a study of the seismic response of box-type laterite masonry structures. Time history analysis of these structures under El-Centro acceleration has been performed using commercial finite element software ANSYS. Effect of 'containment reinforcement' on the seismic response of box type laterite masonry structures has been evaluated.

Experimental Method for the Identification of the Propeller Blade Vibration Characteristics (프로펠러 날개의 진동특성에 대한 실험적 연구)

  • Lee, Hyun-Yup;Kim, Young-Joong;Nho, In-Sik;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.136-141
    • /
    • 2005
  • An experiment method has been developed to analyse the vibration characteristics of marine propeller blades, and vibration tests have been carried out on the model scale propeller in air and in water. The driving point transfer function(acceleration/excitation force) has been measured and modified by compensating the attachment effect of the impedance head. The measured natural frequencies in air have been compared with the theoretical results by an in-house FEM code PROSTEC. The added masses have been derived by comparing the measured natural frequencies in air and in water, and the results have been compared to the results using existing formula based on experience.