• Title/Summary/Keyword: structural acceleration

Search Result 1,111, Processing Time 0.028 seconds

Performance Verification for High Speed Railway Bridge on Test Operation of KTX (KTX 시운전시 고속철도 교량의 성능검증)

  • Na Sung Hoon;Yang Sin chu;Lee Jee Ha;Son Ki Jun
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.477-482
    • /
    • 2003
  • The railway bridges on the new high-speed line are the first structures designed and constructed by our local engineers for high-speed running. In securing running stability and riding comfort in high-speed running, it is very important to verify the performance of structures and local specifications and design criteria by measuring and analyzing the dynamic behavior of main structural members. In this study, 4 different types(simple-span, 2, 3, 4-continuous spans) of PCS Box bridges on the test line(Yongwa$\~$Simok section) were selected, each representing a different type of superstructures, in order to verify the performance of the bridges by measuring dynamic responses during the test-run of KTX. Reviews of the running stability and the riding comfort were carried out with the results of the measurement and the analyses of vibration acceleration, endrotation, distortion and deflection at midspan.

  • PDF

VSC with three-segment nonlinear sliding mode for robot manipulator (로봇 매니퓰레이터를 위한 삼분 비선형 슬라이딩 모드를 가지는 가변구조 제어)

  • 최성훈;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.69-72
    • /
    • 1996
  • In this paper robust tracking control scheme using the new three-segment nonlinear sliding mode technique for nonlinear rigid robotic manipulator is developed. Sliding mode consists of three segments, the promotional acceleration segment, the constant velocity segment and the deceleration segment using terminal sliding mode. Strong robustness and fast error convergence can be obtained for rigid robotic manipulators with large uncertain dynamics by using the new three-segment nonlinear sliding mode technique together with a few useful structural properties of rigid robotic manipulator. The efficiency of the proposed method for the tracking has been demonstrated by simulations for two-link robot manipulator.

  • PDF

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.

Emergency Blockage Application of Engine Part for Integrated Propulsion Performance Test (추진시스템 종합성능시험에서의 엔진부 비상정지 설정)

  • 하성업;이정호;권오성;김병훈;강선일;한상엽
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.171-176
    • /
    • 2003
  • A Test Facility was established to carry out the integrated propulsion performance tests(IPPT). To perform IPPT's with maximum safety, an emergency blockage system was investigated. An emergency blockage system using combustion chamber pressure and acceleration signals was set up to monitor ignition delay and fail, flame out, propellant feeding status, unstable combustion and excessive structural vibration. With such system, the maximum safety could be secured by rapid judgement and follow-up measures, which made IPPT's be safely completed.

  • PDF

Sliding and rocking response of rigid blocks due to horizontal excitations

  • Yang, Yeong-Bin;Hung, Hsiao-Hui;He, Meng-Ju
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • To study the dynamic response of a rigid block standing unrestrained on a rigid foundation which shakes horizontally, four modes of motion can be identified, i.e., rest, slide, rock, and slide and rock. The occurrence of each of these four modes and the transition between any two modes depend on the parametric values specified, the initial conditions, and the magnitude of ground acceleration. In this paper, a general two-dimensional theory is presented for dealing with the various modes of a free-standing rigid block, considering in particular the impact occurring during the rocking motion. Through selection of proper values for the system parameters, the occurrence of each of the four modes and the transition between different modes are demonstrated in the numerical examples.

Hydrodynamic pressures acting on the walls of rectangular fluid containers

  • Dogangun, Adem;Livaoglu, Ramazan
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.203-214
    • /
    • 2004
  • The dynamic response characteristics of a rectangular fluid container are investigated by using finite element method. The fluid is assumed to be linear-elastic, inviscid and compressible. A displacement-based fluid finite element was employed to allow for the effects of the fluid. A typical rectangular fluid container, which is used in recent studies, is considered for the numerical analysis. The North-South component of El Centro Earthquake records is used as input ground acceleration. Rigid and flexible fluid containers solutions are obtained for the chosen sample tank. Hydrodynamic pressures and sloshing motions are determined using Lagrangian fluid finite element. The results obtained from this study are compared with the results obtained by boundary-finite element method (BEM-FEM) and requirements of Eurocode-8. Based on the numerical analysis, some conclusions and discussions on the design considerations for rectangular fluid containers are presented.

Effect of Smooth Hysteretic Behavior for Inelastic Response Spectra (비탄성 응답스펙트럼에 대한 완만한 곡선형 이력거동의 영향)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is closer to smooth hysteretic behavior than piece-wise linear behavior. This paper presents a methodology for computing the constant-ductility inelastic response spectra for smooth hysteretic behaviors. The effect of the hysteretic smoothness on the inelastic response spectra for acceleration, displacement, and input energy is evaluated. The results indicate that increasing smoothness in the hysteretic behavior decreases the inelastic response spectra.

Corrected equations of motion for a wheel-axle set negotiating an arbitrarily changing radius curve (곡선 경사 선로상 차륜-윤축셋에 대한 수정 운동방정식)

  • Choe, Seong-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.940-952
    • /
    • 2007
  • It is found that there are many serious errors in deriving the existing governing equations of motion for a wheel-axle set negotiating an arbitrarily changing radius curve by Vijay K. Garg and Rao V. Dukkipati. Among other things, despite the hypothesis on arbitrarily changing radius of curve, there had been no taking a time derivative of the radius R in the first half of the derivation. Even if the D'lambert force arising from the centrifugal acceleration of vehicle body or bogie was appropriately taken into account while calculating cant deficiency, it is unnecessarily duplicated in the force vectors of governing equations. The graphical model given in Fig. 5.15 is not enough to follow those developed expressions from both physical and structural points of view. Besides, there are some blunders in assigning plus or minus sign not to be regarded as simple typographic ones and similar mistakes are committed in deriving creep force expressions as in the case of a wheel-axle set on a tangent track.

  • PDF

Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

A Study on Vibration Reduction of an Industrial Chop Saw in Operation (산업용 고속절단기의 기동 시 충격완화에 대한 연구)

  • Kim, Doo-Hwan;Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.892-898
    • /
    • 2009
  • In this paper, a cause of a shock of an industrial chop saw is identified by experimental method and the shock is reduced by structural modifications. For the shock identification, vibration signals are measured by an accelerometer when the chop saw operates. Through some experiments, it is found that the shock is occurred by a slip between a spindle and a wheelwasher of the chop saw. To reduce the shock, One method is to lower the mass moment of inertia of the wheelwasher and the angular rotating acceleration of it. Another method is to broaden a contact area between the wheelwasher and the spindle. After designing and analyzing the wheelwasher and the spindle mechanically, a prototype of them is built. With the manufactured prototype, the performances and design requirements of them are experimentally verified by the response measurements.