• Title/Summary/Keyword: structural acceleration

Search Result 1,111, Processing Time 0.025 seconds

Assessment of a concrete arch bridge using static and dynamic load tests

  • Caglayan, B. Ozden;Ozakgul, Kadir;Tezer, Ovunc
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Assessment of a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, which is located in an earthquake-prone region in southern part of the country is presented in this study. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. By using the structural parameters obtained from the dynamic and the static tests, calibrated model of the bridge structure was obtained and this model was used for necessary calculations regarding structural assessment and evaluation.

Element Level System Identification Method without Input Data (미지의 입력자료를 이용한 요소수준의 구조물 손상도 추정기법)

  • Cho, Hyo-Nam;Choi, Young-Min;Moon, Chang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.89-96
    • /
    • 1997
  • Most civil engineering structures, such as highway bridges, towers, power plants and offshore structures suffer structural damages over their service lives caused by adverse loading such as heavy transportation loads, machine vibrations, earthquakes, wind and wave forces. Especially, if excessive load would be acted on the structure, general or partial stiffness should be degraded suddenly and service lives should be shortened eventually For realistic damage assessment of these civil structures, System Identification method using only structure dynamic response data with unknown input excitation is required and thus becoming more challenging problem. In this paper, an improved Iterative Least Squares method is proposed, which seems to be very efficient and robust method, because only the dynamic response data such as acceleration, velocity and displacement is used without input data, and no information on the modal properties is required. The efficiency and robustness of the proposed method is proved by numerical problems and real single span beam model test.

  • PDF

Structural Health Monitoring using Acceleration Response Features of PSC Girder Strengthened with Internal and External Tendons (내부 및 외부 긴장재로 보강된 PSC 거더의 가속도 응답 특성을 이용한 구조건전성 모니터링)

  • Hong, Dong-Soo;Park, Jae-Hyung;Kim, Jeong-Tae;Ryu, Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.352-355
    • /
    • 2010
  • 본 논문에서는 내부 및 외부 긴장재로 보강된 PSC 거더의 가속도 응답 특성을 이용한 구조건전성 모니터링을 위해 실험 및 수치해석 결과를 비교 분석하는 연구를 수행하였다. 첫 번째로, 내부 및 외부 긴장재로 보강된 모형 PSC 거더를 제작하였다. 두 번째로, 모형 PSC 거더의 형상, 재료 및 경계조건과 긴장재의 배치를 고려하여 초기 유한요소모델을 설계하였다. 세 번째로, 다수의 내부 및 외부 긴장력 조건하의 모형 PSC 거더에 대한 동특성 추출 실험 및 수치해석을 수행하였다. 마지막으로, 실험결과와 수치해석 결과를 비교 분석하여 가속도 응답 특성을 이용한 내부 및 외부 긴장재로 보강된 PSC 거더의 구조건전성 모니터링에 대한 적용성을 검토하였다.

  • PDF

Simulation study on dynamic response of precast frames made of recycled aggregate concrete

  • Pham, ThiLoan;Xiao, Jianzhuang;Ding, Tao
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.643-667
    • /
    • 2015
  • 3-dimentional precast recycled aggregate concrete (RAC) finite element models were developed by means of the platform OpenSees to implement sophisticated nonlinear model subjected to seismic loads. Efforts were devoted to the dynamic responses (including dynamic characteristics, acceleration amplifications, displacements, story drifts) and capacity curve. In addition, this study extended the prediction on dynamic response of precast RAC model by parametric study of material properties that represent the replacement percentage of recycled coarse aggregate (RCA). Principles and assumptions that represent characteristics of precast structure and influence of the interface between head of column and cast-in-place (CIP) joint on the stiffness of the joints was put forward and validated by test results. The comparison between simulated and tested results of the precast RAC frame shows a good correlation with most of the relative errors about 25% in general. Therefore, the adopted assumptions and the platform OpenSees are a viable approach to simulate the dynamic response of precast frames made of RAC.

Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test (차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용)

  • Park, Hyung-Ghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The vehicle loading test under the strict traffic control is generally carried out as a present practice in an evaluation process of the bearing capacity of a bridge. The quasi-static load test is recently proposed to mitigate the traffic condition of test, and analyze the disturbed acceleration time-history data of free vibration due to the ambient traffic on the bridge by Fourier transform to calculate only the natural frequencies of the bridge. The calculated frequencies have some errors due to the analysis technique as well as the influence of ambient traffic loads, and in addition to it is cumbersome to obtain the free vibration data during a quasi-static load test. In this study, the wavelet transform technique using Morlet wavelet is used to analyze the acceleration data recorded during a quasi-static load test on a bridge and calculate the natural frequencies and the modal damping ratios of the bridge. The study results show that the wavelet transform technique is a reliable and reasonable method to analyze test data and obtain the natural frequencies and the modal damping ratios of a bridge regardless of the data types i.e. free or forced vibrations.

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

Data Analysis of International Joint Road and Sea Transportation Tests Under Normal Conditions of Transport (국제공동 육해상 정상운반시험의 데이터 분석)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.275-289
    • /
    • 2020
  • In 2017, multimodal transportation tests for evaluating road, sea, and rail transport were performed by research institutes in the US, Spain, and the Republic of Korea. In this study, acceleration and strain data determined through road and sea tests were analyzed. It was investigated whether the load generated for each transport mode was amplified or attenuated according to the load transfer path. From the results, it was confirmed that the load transfer characteristics differed according to the transportation mode and loading path. The effects of strain determined through each test on the structural integrity of the spent nuclear fuel were also investigated. It was found that the magnitude of the measured strain had a negligible effect on the structural integrity of the spent nuclear fuel, considering its fatigue strength. The results for the acceleration and strain data analyses obtained in this study will be useful for scheduled domestic transportation tests under normal transport conditions.

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources

  • Mosleh, Araliya;Razzaghi, Mehran S.;Jara, Jose;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.517-538
    • /
    • 2016
  • This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges' seismic responses to variations of structural parameters. The analysis showed that uncertainties related to the presence of lap splices in columns and superstructure type in terms of integral or simply supported spans should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the conditional probabilities that a specific structural demand will reach or exceed the structural capacity by considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also show that the simply supported bridges perform consistently better from a seismic perspective than integral bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of highway bridges.

The optimum damping retrofit for cabinet structures of NPP by μ-GA (μ-GA를 이용한 원전 캐비닛구조물의 최적감쇠보강)

  • Lee, Gye-Hee;Ha, Dong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.1-7
    • /
    • 2005
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contain seismic category 1 relays was studied in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed at the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by ${\mu}$-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained inform of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The objective function of the optimum procedure was constructed based on the maximum ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness for adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the values of damping exponents are low.

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.