• Title/Summary/Keyword: strongly AP

Search Result 52, Processing Time 0.019 seconds

Protective Effects of Helianthus annuus Seed Extract against Chemical-Induced Neuronal Cell Death (해바라기씨 추출물의 뇌세포에 대한 사멸 보호 효과)

  • Park, Ja-Young;Woo, Sang-Uk;Heo, Jin-Chul;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • To develop an anti-dementia agent with potential therapeutic value in the protection of neuronal cells, we selected a water extract of Helianthus annuus seed for analysis. We measured acetylcholinesterase inhibitory activity in the extract, and analyzed the protective effect of the extract on neuronal cell death induced by hydrogen peroxide, or amyloid ${\beta}-peptide$, of SH-SY5Y neuroblastoma cells. The result showed that the extinct exerted protective effects of 83%, 72% and 53% respectively, on cell death induced by 100M, 200M, and 500M hydrogen peroxide. Also, when 50M of amyloid ${\beta}-peptide$ was added to the cells, the extract showed a protective effect (up to 80%) on cell death. Overall, the results showed that the H. annuus extract inhibited acetylcholinesterase activity in a dose-dependent manner, and the extract also strongly protected against cell death induced by hydrogen peroxide or amyloid ${\beta}-peptide$.

Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium (병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응)

  • Song, Sang-Sun;Lee, Sun;Lee, Mi-Kyoung;Lim, Sung-Young;Cho, Min-Ho;Park, Young-Keun;Park, Kyeong-Ryang;Lee, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

  • PDF