• Title/Summary/Keyword: strong wind speed

Search Result 311, Processing Time 0.036 seconds

Upwelling in the southwest region of the East Sea in July, 2013 (2013년 7월 동해 남서 해역의 용승)

  • Choi, Yong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.212-220
    • /
    • 2015
  • We examined the appearance of cold water in the southwest region of the East Sea, based on the sea surface temperature (SST) at the east coast of Korea and buoy data in Donghae ($37^{\circ}31$'N, $130^{\circ}00$'E, 80 km east away from Donghae port) and Pohang ($36^{\circ}21$'N, $129^{\circ}46$'E, 35 km east away from Ganggu port) from June to August in 2013. Also, the serial oceanographic data of National Fisheries Research and Development Institute (NFRDI) were used to see the oceanographic conditions for June and August in 2013. The SST anomaly at the east coast showed negative values in $3{\sim}6^{\circ}C$ from 2 July. At Janggigab, the SST anomaly showed negative value amount to $10^{\circ}C$ in 8 July. The negative values of SST anomaly continued to the middle of August at Janggigab. The wind speed was 6~11 m/s and the direction was south-southwestly in 1 July. The wind speed amounts to 6~16 m/s in 2 July. It means that the strong wind induced the upwelling effect by a day. The temperature was lower than normal at the depth in 20 m of the East Sea in June and August. The air pressure was 996~998 hPa in the beginning of July. It was the lowest air pressure during the studied period. The correlation was 0.3 between the SST anomaly and air pressure. It was suggested that the appearance of cold water in the East Sea was influenced by a stirring due to wind and low air pressure as well as coastal upwelling.

Numerical Study on Characteristics of Turbulence Scheme in Planetary Boundary Layer (난류 모수화 방법에 따른 대기경계층 수치모의 특성에 관한 연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • This paper investigates the characteristics of turbulence schemes. Turbulence closures are fundamental for modeling the atmospheric diffusion, transport and dispersion in the boundary layer. In particular, in non-homogeneous conditions, a proper description of turbulent transport in planetary boundary layer is fundamental aspect. This study is based on the Regional Atmospheric Modeling System (RAMS) and combines four different turbulence schemes to assess if the different schemes have a impact on simulation results of vertical profiles. Two of these schemes are Isotropc Deformation scheme (I.Def) and Anisotropic deformation scheme (A.Def) that are simple local scheme based on Smagorinsky scheme. The other two are Mellor-Yamada scheme (MY2.5) and Deardorff TKE scheme (D.TKE) that are more complex non-local schemes that include a prognostic equation for turbulence kinetic energy. The simulated potential temperature, wind speed and mixing ratio are compared against radiosonde observations from the study region. MY2.5 shows consistently reasonable vertical profile and closet to observation. D.TKE shows good results under relatively strong synoptic condition especially, mixing ratio simulation. Validation results show that all schemes consistently underestimated wind speed and mixing ratio but, potential temperature was somewhat overestimated.

Estimation of Standard Load for Disaster-Resistant Design of Outdoor Signboards (내재해형 옥외광고물 설계를 위한 표준하중 산정)

  • Lee, Sungsu;Kim, Junyeong;Ham, Hee Jung;Kim, Ji Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.131-140
    • /
    • 2016
  • Recent destructions of outdoor signboards have frequently been caused by strong wind, resulting in damage on the property and human livelihood. One of the major causes of the problems is inadequate implementation of structural design code to the outdoor signboards which are vulnerable to wind. This leads to this paper to present the design guideline of wind-resistant outdoor signboards. In order to estimate the design wind speed, basic wind speeds over Korea suggested by KBC(2015)(revision) are corrected with land surface roughness and topography of the terrain and installation height of the signboard. This paper also suggested the procedure of wind load estimation for different types of outdoor signboards; wall attached type, wall ribbed type and ground erected type. Since the process involves complex calculation to some extent, this paper presents summarized version of wind load estimation from non-professional point of view.

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.

Simulation of Atmospheric Dispersion over the Yosu Area -II. Diurnal Variations by Solar Radiation- (여수지역 대기확산의 수치 모사 -II. 일사에 의한 일변화-)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • Diurnal variations of wind field and pollutant dispersion over the Yosu area under the insolation conditions of summer and winter were investigated by using the Regional Atmospheric Modeling System (RAMS). Initially, horizontally homogeneous wind field were assumed on the basis of sounding data at the Kwangju upper-air station for days whose morning wind speeds were below 2m/s. In these days, the sea breeze prevailed in summer while the land breeze lasted for a few hours in the morning; the effect of synoptic winds was strong in winter with some inclusion of wind variations owing to the interaction between sea and land. The predicted wind direction at the location of the Yosu weather station captured an important change of the sea-land breeze of the observed one. The predicted wind speed and the air temperature agreed with observed ones in a reasonable range. In the morning, both in summer and winter, winds around the source location were diverged and became weak between the mountainous area to the southeast and the Kwangyang Bay to the north. Winds, however, accelerated while blowing to the east and south and blowing on the mountainous area. Complicated wind fields resulted in high pollutant concentrations at almost all receptors considered. These high concentrations in the morning were even comparable to the ISCST3 calculations with the worst-case and typical meteorological conditions designated by USEPA(1996). On the other hand, in the afternoon, the wind field was rather uniform even in the mountainous area with development of mixing layer and the concentration distributions being close to the Gaussian distributions.

  • PDF

Measurement of Aerodynamic Properties of Screens for Windbreak Fence using the Apparatus for Testing Screens (공력 저항 측정기를 이용한 방풍펜스 방진막의 공기 투과 저항력 측정)

  • Kim, Rack-Woo;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Son, Young-Hwan;Kim, Tae-Wan;Kim, Min-Young;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.145-154
    • /
    • 2013
  • Recently, damage occurrence by wind erosion has been increasing in society. In times past, such problems only took place in desert area ; however, in recent years, the wind erosion problem is spreading out to agricultural land. Wind erosion in agricultural land can cause loss of loam soils, the disturbance of the photosynthesis of the crop fields and serious economic losses. To overcome the mentioned problems, installation of windbreak fence can be recommended which function as disturbing strong wind and wind erosion. However, there is still no proper guideline to install the windbreak fence and the installation used to rely on the intuition of the workers due to the lack of related studies. Therefore, this study measured the aerodynamic resistance of screens of the windbreak fence using the apparatus for testing screens. The apparatus for testing screens was designed to measure pressure loss around the screen. Measured pressure loss by wall friction compensated for pressure loss to calculate the aerodynamic resistance of screens. The result of pressure loss by regression analysis derived the aerodynamic coefficient of Darcy-Forchheimer equation and power law equation. The aerodynamic resistance was constant regardless of the overlapped shape when the screen was overlapped into several layers. Increasing the number of layers of the screen, internal resistance increased significantly more, and pressure loss caused by the screen also increased linearly when the wind speed was certain conditions, but permeability had no tendency. In the future, the results of this study will be applied to the computational fluid dynamics simulation. The simulation models will be also validated in advance by wind tunnel experiments. It will provide standard of a design for constructing windbreak fence.

Analysis and Countermeasures of 345kV Incheon-TP Overhead Transmission Lines Collapse (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Min, Byeong-Wook;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.323_324
    • /
    • 2009
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

  • PDF

Short-term Variation in Class A Pan Evaporation (대형증발계 증발량의 일 변화)

  • 이부용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.197-202
    • /
    • 2002
  • A new method is used to estimate the amount of water evaporation from Class A Pan with higher precision and accuracy. The principle of method is to detect the weight change of a buoyant sinker resulting from a change in water level of Class A Pan. A strain-gauge load cell is used to measure the weight change. Field observation of evaporation was done at Pohang Meteorological Station from June 24 to August 4, 2002. By using this new method, it is possible to measure hourly evaporation accurately even under a strong solar radiation and wind disturbance, enabling a direct comparison of evaporation with other meteorological elements. At night, under low humidity and high wind speed conditions, more evaporation was recorded than during daytime. Maximum evaporation rates observed during this period exceed 1.0 mm/hour under the sunny and windy conditions with low humidity. To understand relationships between meteorological elements and latent heat flux at ground level, we suggest intensive held experiments using high accuracy evaporation recording instruments with hourly time interval.

The Main Stream of Mathematical Modeling of a Suspension Bridge (교량건설방식에 따른 수학적 모델링의 변천과정 기술과 현수교 방정식의 수학적 연구의 흐름)

  • Nam, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • It is well known that a suspension bridge may display certain oscillations under external aerodynamic forces. Under the action of a strong wind, in particular, a narrow and very flexible suspension bridge can undergo dangerous oscillations. The collapse of the Tacoma Narrows suspension bridge caused by a wind blowing at a speed of 42 miles per hour, is one of the most striking examples. In this paper, we study models describing oscillations in suspension bridges and known results.

  • PDF

A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex (아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의)

  • Jang Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.