• Title/Summary/Keyword: strong motion record

Search Result 16, Processing Time 0.022 seconds

On the influence of strong-ground motion duration on residual displacement demands

  • Ruiz-Garcia, Jorge
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.327-344
    • /
    • 2010
  • This paper summarizes results of a comprehensive analytical study aimed at evaluating the influence of strong ground motion duration on residual displacement demands of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. For that purpose, two sets of 20 earthquake ground motions representative of short-duration and long-duration records were considered in this investigation. While the influence of strong ground motion duration was evaluated through constant-strength residual displacement ratios, $C_r$, computed from the nonlinear response of elastoplastic SDOF systems, its effect on the amplitude and height-wise distribution of residual drift demands in MDOF systems was studied from the response of three one-bay two-dimensional generic frame models. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record-to-record variability in the estimation of residual drift demands. From the results obtained in this study, it was found that long strong-motion duration records might trigger larger median $C_r$ ratios for SDOF systems having short-to-medium period of vibration than short strong-motion duration records. However, taking into account the large record-to-record variability of $C_r$, it was found that strong motion duration might not be statistically significant for most of the combinations of period of vibration and levels of lateral strength considered in this study. In addition, strong motion duration does not have a significant influence on the amplitude of peak residual drift demands in MDOF systems, but records having long strong-motion duration tend to increase residual drift demands in the upper stories of long-period generic frames.

Sufficiency of the spectral shape in predicting peak and cumulative structural earthquake responses

  • Abdollahzadeh, Gholamreza;Sazjini, Mohammad
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.629-637
    • /
    • 2018
  • In recent years, selection of strong ground motion records by means of intensity measures representing the spectral shape of the earthquake excitation has been studied by many researchers. These studies indicate the adequacy of this record selection approach in reduction of the scattering of seismic responses. In present study, this method has been studied more in depth to reveal the sufficiency of the spectral shape in predicting structural seismic responses such as the plastic deformation and the dissipated hysteresis energy which are associated with cumulative properties of the selected records. For this purpose, after selecting the records based on the spectral shape, the correlation of some seismic responses and strong ground motion duration of earthquake records are explored. Findings indicate strong correlation of some structural responses with the significant duration of the records. This fact implies that the spectral shape could not reflect all characteristics of the strong ground motion and emphasizes the importance of additional criteria along with the spectral shape in the record selection.

Scaled and unscaled ground motion sets for uni-directional and bi-directional dynamic analysis

  • Kayhan, Ali Haydar
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.563-588
    • /
    • 2016
  • In this study, solution models are proposed to obtain code-compatible ground motion record sets which can be used for both uni-directional and bi-directional dynamic analyses. Besides scaled, unscaled ground motion record sets are obtained to show the utility and efficiency of the solution models. For scaled ground motion sets the proposed model is based on hybrid HS-Solver which integrates heuristic harmony search (HS) algorithm with the spreadsheet Solver add-in. For unscaled ground motion sets HS based solution model is proposed. Design spectra defined in Eurocode-8 for different soil types are selected as target spectra. The European Strong Motion Database is used to get ground motion record sets. Also, a sensitivity analysis is conducted to evaluate the effect of different HS solution parameters on the solution accuracy. Results show that the proposed solution models can be regarded as efficient ways to develop scaled and unscaled ground motion sets compatible with code-based design spectra.

Updating of FE models of an instrumented G+9 RC building using measured data from strong motion and ambient vibration survey

  • Singh, J.P.;Agarwal, Pankaj;Kumar, Ashok;Thakkar, S.K.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.325-339
    • /
    • 2013
  • A number of structural and modal parameters are derived from the strong motion records of an instrumented G + 9 storeyed RC building during Bhuj earthquake, 26 Jan. 2001 in India. Some of the extracted parameters are peak floor accelerations, storey drift and modal characteristics. Modal parameters of the building are also compared with the values obtained from ambient vibration survey of the instrumented building after the occurrence of earthquake. These parameters are further used for calibrating the accuracy of fixed-base Finite Element (FE) models considering structural and non-structural elements. Some conclusions are drawn based on theoretical and experimental results obtained from strong motion records and time history analysis of FE models. An important outcome of the study is that strong motion peak acceleration profile in two horizontal directions is close to FE model in which masonry infill walls are modeled.

Displacements, damage measures and response spectra obtained from a synthetic accelerogram processed by causal and acausal Butterworth filters

  • Gundes Bakir, Pelin;Richard, J. Vaccaro
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.409-430
    • /
    • 2006
  • The aim of this study is to investigate the reliability of strong motion records processed by causal and acausal Butterworth filters in comparison to the results obtained from a synthetic accelerogram. For this purpose, the fault parallel component of the Bolu record of the Duzce earthquake is modeled with a sum of exponentially damped sinusoidal components. Noise-free velocities and displacements are then obtained by analytically integrating the synthetic acceleration model. The analytical velocity and displacement signals are used as a standard with which to judge the validity of the signals obtained by filtering with causal and acausal filters and numerically integrating the acceleration model. The results show that the acausal filters are clearly preferable to the causal filters due to the fact that the response spectra obtained from the acausal filters match the spectra obtained from the simulated accelerogram better than that obtained by causal filters. The response spectra are independent from the order of the filters and from the method of integration (whether analytical integration after a spline fit to the synthetic accelerogram or the trapezoidal rule). The response spectra are sensitive to the chosen corner frequency of both the causal and the acausal filters and also to the inclusion of the pads. Accurate prediction of the static residual displacement (SRD) is very important for structures traversing faults in the near-fault regions. The greatest adverse effect of the high pass filters is their removal of the SRD. However, the noise-free displacements obtained by double integrating the synthetic accelerogram analytically preserve the SRD. It is thus apparent that conventional high pass filters should not be used for processing near-fault strong-motion records although they can be reliably used for far-fault records if applied acausally. The ground motion parameters such as ARIAS intensity, HUSID plots, Housner spectral intensity and the duration of strong-motion are found to be insensitive to the causality of filters.

Applications of the wavelet transform in the generation and analysis of spectrum-compatible records

  • Suarez, Luis E.;Montejo, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.173-197
    • /
    • 2007
  • A wavelet-based procedure to generate artificial accelerograms compatible with a prescribed seismic design spectrum is described. A procedure to perform a baseline correction of the compatible accelerograms is also described. To examine how the frequency content of the modified records evolves with time, they are analyzed in the time and frequency using the wavelet transform. The changes in the strong motion duration and input energy spectrum are also investigated. An alternative way to match the design spectrum, termed the "two-band matching procedure", is proposed with the objective of preserving the non-stationary characteristics of the original record in the modified accelerogram.

Conditional mean spectrum for Bucharest

  • Vacareanu, Radu;Iancovici, Mihail;Pavel, Florin
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.141-157
    • /
    • 2014
  • The Conditional Mean Spectrum represents a powerful link between the seismic hazard information and the selection of strong ground motion records at a particular site. The scope of the paper is to apply for the city of Bucharest for the first time the method to obtain the Conditional Mean Spectrum (CMS) presented by Baker (2011) and to select, on the basis of the CMS, a suite of strong ground motions for performing elastic and inelastic dynamic analyses of buildings and structures with fundamental periods of vibration in the vicinity of 1.0 s. The major seismic hazard for Bucharest and for most of Southern and Eastern Romania is dominated by the Vrancea subcrustal seismic source. The ground motion prediction equation developed for subduction-type earthquakes and soil conditions by Youngs et al. (1997) is used for the computation of the Uniform Hazard Spectrum (UHS) and the CMS. The disaggregation of seismic hazard is then performed in order to determine the mean causal values of magnitude and source-to-site distance for a particular spectral ordinate (for a spectral period T = 1.0 s in this study). The spectral period of 1.0 s is considered to be representative for the new stock of residential and office reinforced concrete (RC) buildings in Bucharest. The differences between the Uniform Hazard Spectrum (UHS) and the Conditional Mean Spectrum (CMS) are discussed taking into account the scarcity of ground motions recorded in the region of Bucharest and the frequency content characteristics of the recorded data. Moreover, a record selection based on the criteria proposed by Baker and Cornell (2006) and Baker (2011) is performed using a dataset consisting of strong ground motions recorded during seven Vrancea seismic events.

The General Characteristic of Elastic-Plastic Spectra (탄소성 응답스펙트럼의 일반적인 성질에 대하여)

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.233-240
    • /
    • 1997
  • Seven kinds of hysteric model were used and classified three groups considering the absorbing capacities of strain energy for each model. Four kids of each model. Four kinds of strong motion earthquake record (two of them were recorded in Japan and the others in U.S.A) are used. The yield strength of building was set in the ratio to the maximum input acceleration (Yield Strength / Maximum Acceleration = 0.5~3.0). Natural periods of structures were varied 0.1~3.0 second with an interval of 0.1 second. First group : Elastic-Plastic model, Ramberg-Osgood model Second group : Degrading Tri-liner model, Takeda model Third group : Slip model, Origin model, Max-D model Elastic-plastic response spectra were calculated for response velocities, displacement, energy input, ductility factors, accumulated ductility factors. The equivalent response values of M.D.O.F systems against S.D.O.F system were calculated to compare the relationship of two systems.

  • PDF

Home exercise program adherence strategies in vestibular rehabilitation: a systematic review

  • Gaikwad, Shilpa B.;Mukherjee, Tatri;Shah, Parita V.;Ambode, Oluwaseun I.;Johnsonb, Eric G.;Daher, Noha S.
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.53-62
    • /
    • 2016
  • Objective: The aim of this systematic review was to investigate for effective strategies to improve home exercise program (HEP) adherence in vestibular rehabilitation (VR). Design: Systematic review. Methods: A systematic review was conducted to identify effective strategies used to improve HEP adherence of patients in VR. Six databases, Academic Search Premier, Cochrane Library, CINAHL, PUBMED, PsycINFO, and Web of Science were searched from their inception to December 31, 2015. The keywords used for search were 'home program', 'home intervention', 'compliance', 'adherence', 'vestibular rehabilitation', 'motion sickness', and 'motion sensitivity'. Results: A total of eight studies were selected to be included in the review. There was 95.2% agreement between the two reviewers who reviewed the studies using a quality assessment tool. The overall inter-rater agreement (${\kappa}$=0.73) showed good agreement between the reviewers. Strong evidence was identified for 3 major categories of effective HEP adherence strategies, 1) providing patient with written summary of HEP; 2) asking patient to maintain a record of HEP and symptoms; and 3) providing tele-rehabilitation in form of email and/or telephone support along with in person treatment sessions. Also, based on strong evidence, computerized technology was not found to be superior to other strategies for improving patients' HEP adherence in VR. Conclusions: The effective strategies for improving HEP in VR include written summary of exercise, maintenance of log of HEP and symptoms and tele-rehabilitation along with in person treatment sessions.

A Numerical Simulation Study of a Heavy Rainfall Event over Daegwallyeong on 31 July 2014 (2014년 7월 31일 대관령에서 발생한 집중호우에 관한 수치모의 연구)

  • Choi, Seung-Bo;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.159-183
    • /
    • 2016
  • On 31 July 2014, there was a localized torrential rainfall ($58.5mm\;hr^{-1}$) caused by a strong convective cell with thunder showers over Daegwallyeong. In the surface synoptic chart, a typhoon was positioned in the East China Sea and the subtropical high was expanded to the Korean peninsula. A WRF (Weather Research and Forecasting) numerical simulation with a resolution of 1 km was performed for a detailed analysis. The simulation result showed a similar pattern in a reflectivity distribution particularly over the Gangwon-do region, compared with the radar reflectivity. According to the results of the WRF simulation, the process and mechanism of the localized heavy rainfall over Daegwallyeong are as follows: (1) a convective instability over the middle part of the Korean peninsula was enhanced due to the low level advection of warm and humid air from the North Pacific high. (2) There was easterly flow from the coast to the mountainous regions around Daegwallyeong, which was generated by the differential heating of the insolation among Daegwallyeong and the Yeongdong coastal plain, and nearby coastal waters. (3) In addition, westerly flow from the western part of Daegwallyeong caused a strong convergence in this region, generating a strong upward motion combined by an orographic effect. (4) This brought about a new convective cell over Daegwallyeong. And this cell was more developed by the outflow from another thunderstorm cell to the south, and finally these two cells were merged to develop as a strong convective cell with thunder showers, leading to the record breaking maximum rainfall per hour ($58.5mm\;hr^{-1}$) in July.