• Title/Summary/Keyword: strong dominating set

Search Result 4, Processing Time 0.015 seconds

Some Cycle and Star Related Nordhaus-Gaddum Type Relations on Strong Efficient Dominating Sets

  • Murugan, Karthikeyan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Let G = (V, E) be a simple graph with p vertices and q edges. A subset S of V (G) is called a strong (weak) efficient dominating set of G if for every $v{\in}V(G)$ we have ${\mid}N_s[v]{\cap}S{\mid}=1$ (resp. ${\mid}N_w[v]{\cap}S{\mid}=1$), where $N_s(v)=\{u{\in}V(G):uv{\in}E(G),\;deg(u){\geq}deg(v)\}$. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by ${\gamma}_{se}(G)$ (${\gamma}_{we}(G)$). A graph G is strong efficient if there exists a strong efficient dominating set of G. In this paper, some cycle and star related Nordhaus-Gaddum type relations on strong efficient dominating sets and the number of strong efficient dominating sets are studied.

NOVEL DECISION MAKING METHOD BASED ON DOMINATION IN m-POLAR FUZZY GRAPHS

  • Akram, Muhammad;Waseem, Neha
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1077-1097
    • /
    • 2017
  • In this research article, we introduce certain concepts, including domination, total domination, strong domination, weak domination, edge domination and total edge domination in m-polar fuzzy graphs. We describe these concepts by several examples. We investigate some related properties of certain dominations in m-polar fuzzy graphs. We also present a decision making method based on domination in m-polar fuzzy graphs.

Distributed Construction of the Multiple-Ring Topology of the Connected Dominating Set for the Mobile Ad Hoc Networks: Boltzmann Machine Approach (무선 애드혹 망을 위한 연결 지배 집합 다중-링 위상의 분산적 구성-볼츠만 기계적 접근)

  • Park, Jae-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.226-238
    • /
    • 2007
  • In this paper, we present a novel fully distributed topology control protocol that can construct the multiple-ring topology of Minimal Connected Dominating Set (MCDS) as the transport backbone for mobile ad hoc networks. It makes a topology from the minimal nodes that are chosen from all the nodes, and the constructed topology is comprised of the minimal physical links while preserving connectivity. This topology reduces the interference. The all nodes work as the nodes of the distributed parallel Boltzmann machine, of which the objective function is consisted of two Boltzmann factors: the link degree and the connection domination degree. To define these Boltzmann factors, we extend the Connected Dominating Set into a fuzzy set, and also define the fuzzy set of nodes by which the multiple-ring topology can be constructed. To construct the transport backbone of the mobile ad hoc network, the proposed protocol chooses the nodes that are the strong members of these two fuzzy sets as the clusterheads. We also ran simulations to provide the quantitative comparison against the related works in terms of the packet loss rate and the energy consumption rate. As a result, we show that the network that is constructed by the proposed protocol has far better than the other ones with respect to the packet loss rate and the energy consumption rate.

ON DOMINATION NUMBERS OF GRAPH BUNDLES

  • Zmazek Blaz;Zerovnik Janez
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.39-48
    • /
    • 2006
  • Let ${\gamma}$(G) be the domination number of a graph G. It is shown that for any $k {\ge} 0$ there exists a Cartesian graph bundle $B{\Box}_{\varphi}F$ such that ${\gamma}(B{\Box}_{\varphi}F) ={\gamma}(B){\gamma}(F)-2k$. The domination numbers of Cartesian bundles of two cycles are determined exactly when the fibre graph is a triangle or a square. A statement similar to Vizing's conjecture on strong graph bundles is shown not to be true by proving the inequality ${\gamma}(B{\bigotimes}_{\varphi}F){\le}{\gamma}(B){\gamma}(F)$ for strong graph bundles. Examples of graphs Band F with ${\gamma}(B{\bigotimes}_{\varphi}F) < {\gamma}(B){\gamma}(F)$ are given.