• Title/Summary/Keyword: strip tension

Search Result 142, Processing Time 0.025 seconds

Numerical Prediction of Permanent Deformation of Automotive Weather Strip (자동차용 웨더스트립의 영구변형 예측)

  • Park, Joon-Chul;Min, Byung-Kwon;Oh, Jeong-Seok;Moon, Hyung-Il;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.121-126
    • /
    • 2010
  • The automotive weather strip has functions of isolating of water, dust, noise and vibration from outside. To achieve good sealing performance, weather strip should be designed to have the high contact force and wide contact area. However, these design causes excessive permanent deformation of weather strip. The causes of permanent deformation is generally explained to be the chemical material detrioration and physical variation and cyclic loading, etc. This paper introduces a numerical method to predict the permanent deformation using the time dependent viscoelastic model which is represented by Prony series in ABAQUS. Uniaxial tension and creep tests were conducted to obtain the material data. And the lab. test for the permanent deformation was accelerated during shorter time, 300 hours. The permanent deformation of weather strip was successfully predicted under the different loading conditions and different section shapes using the suggested numerical process.

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

A Study on Failure Assessment Diagrams for a Solid Propellant (고체추진제의 파손평가선도 작성에 관한 연구)

  • Ha, Jae-Seok;Kim, Jae-Hoon;Yang, Ho-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.67-73
    • /
    • 2012
  • Failure mechanisms for a solid propellant were discussed, and the stip-yield and the inherent flaw models were applied to them. Then, failure assessment diagram methods were investigated by means of modified two models. Fracture toughness tests using CCT(center-cracked tension) specimens made of a solid propellant were conducted to generate the failure assessment diagrams. The failure assessment diagram of the inherent flaw model was normalized in order to compare with that of the modified strip-yield model. From the comparison of two failure assessment diagrams, it was found that the failure assessment diagram of the modified inherent flaw model more conservatively assesses the failure than that of the modified strip-yield model.

Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability (병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화)

  • Hong, Geum-Sik;Lee, Seung-Hwan;Choe, Jin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms (두 개의 스튜어트 플랫폼을 이용한 병렬형 신 압연기의 조작성 해석)

  • 이준호;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.925-936
    • /
    • 2003
  • The manipulability analysis of the parallel-type rolling mill proposed in Hong et al. [1] is re-visited. The parallel rolling mill uses two Stewart platforms in opposite direction for the generation of 6 degree-of-freedom motions of each roll. The objective of this new parallel rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of rolls, and tension of the strip. New forward/inverse kinematics problems, in contrast with [1], are formulated. The forward kinematics problem is defined as the problem of finding the roll-gap and the pair-crossing angle of two work rolls for given lengths of twelve legs. On the other hand, the inverse kinematics problem is defined as the problem of finding the lengths of twelve legs when the roll-gap, the pair-crossing angle, and the position and orientation of one work roll are given. The method of manipulability analysis used in this paper follows the spirit of [1]. But, because the rolling force and moment exerted from both upper and lower rolls have been included in the manipulability analysis, more accurate results than the use of a single platform can be achieved. Two. kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

Active Polypeptides in Korean Amphibian Skin Extracts (한국산 양서류피부의 생물학적활성물질에 관한 검색)

  • Cho, T.S.;Lee, W.C.;Hong, S.S.
    • The Korean Journal of Pharmacology
    • /
    • v.11 no.1 s.17
    • /
    • pp.15-18
    • /
    • 1975
  • The effect of skin extracts of Korean amphibian, poisonous snake and fresh-water fish were determined for their caerulein-like action on rabbit gall bladder strips. The isolated gall bladder strips were prepared according to the technique described by Amer and Becvar(1969). The strips were placed in a bath containing 100ml of Locke-Ringer solution maintained at $38^{\circ}C$. Oxygen was continuously bubbled through the solution. The tension of the muscle strip was initially adjusted to 0.7g. The contractile response was measured isometrically by a force-displacement transducer connected to a polygraph. In this rabbit gall bladder strip caerulein produced contraction of CCK-PZ type. The skin extract of Korean amphibian also elicited similar contraction as caerulein, which extracted from Australian amphibian, Hyla caerulea, by Erspamer et al. The calculated amount was approximately $2{\mu}g$ caerulein per gram of skin tissue in Korean amphibian and the potency was about 1/200 of that seen in Australian amphibian. The contraction of gall bladder strip by our amphibians occurs in decreasing order; Rana Nigromaculata coreana Okada, Rana nigromaculata Hallowell, Hyla arborea japonica Gunther and Bombina orientalis Boulenger. The skin extracts of poisonous snake and fresh-water fish produced no caerulein-like activity.

  • PDF

A SMA-based actuation system for a fish robot

  • Le, Chan Hoang;Nguyen, Quang Sang;Park, Hoon Cheol
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.501-515
    • /
    • 2012
  • We design and test a shape memory alloy (SMA)-based actuation system that can be used to propel a fish robot. The actuator in the system is composed of a 0.1 mm diameter SMA wire, a 0.5 mm-thick glass/epoxy composite strip, and a fixture frame. The SMA wire is installed in a pre-bent composite strip that provides initial tension to the SMA wire. The actuator can produce a blocking force of about 200 gram force (gf) and displacement of 3.5 mm at the center of the glass/epoxy strip for an 8 V application. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed, and thrust produced by the tail-beat motion. The tail-beat angle is about $20^{\circ}$, the maximum swimming speed is about 1.6 cm/s, and the measured average thrust is about 0.4 gf when the fish robot is operated at 0.9 Hz.

A Study on Failure Assessment Diagrams for a Highly Filled Elastomer (고충전 탄성중합체의 파손평가선도 작성에 관한 연구)

  • Ha, Jae-Seok;Kim, Jae-Hoon;Yang, Ho-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.532-538
    • /
    • 2012
  • Failure mechanisms for a highly filled elastomer were discussed, and the stip-yield and the inherent flaw models were applied to them. Then, failure assessment diagram methods were investigated by means of modified two models. Fracture toughness tests using CCT(center-cracked tension) specimens made of a highly filled elastomer were conducted to generate the failure assessment diagrams. The failure assessment diagram of the inherent flaw model was normalized in order to compare with that of the modified strip-yield model. From the comparison of two failure assessment diagrams, it was found that the failure assessment diagram of the modified inherent flaw model more conservatively assesses the failure than that of the modified strip-yield model.

  • PDF

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

Analysis of Residual Stress and Etching Curl of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력과 변형 해석)

  • 정호승;조종래;문영훈;김교성
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • The cold rolling conditions for the ultra thin steel for tension mask are very important because the residual stress that affects the flatness of strip is generate during the cold rolling. The residual stress in the sheet causes etching curls when it suffers perforation process. The residual stress through the thickness. To estimate the residual stress and deformation due to etching curl. FEM analysis is performed. Numerical simulation employ a ANSY5 5.6 and an elastic-plastic constitutive equation. The simulation results indicate the distribution of residual stress in the rolled sheet can be controlled by selecting the rolling conditions properly.