• 제목/요약/키워드: stringer stiffened shell

검색결과 9건 처리시간 0.022초

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis;Amin Khajehdezfuly;Mohammad Reza Sardari;Shapour Moradi
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.543-562
    • /
    • 2024
  • While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

보강원통셀의 최적구조설계에 관한 연구 (A Study on the Ooptimization of the Stiffened Cylindrical Shell)

  • 이영신;김대원
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.205-212
    • /
    • 1989
  • 본 연구에서는 축방향 압축력을 받는 단순지지 직교보강원통셸을 구배투영법 (Gradient Projection Method)으로 최적화 하였으며, 이 과정에서 좌굴해석은 확산법 (Smeared-Out Method)으로 수행하였다. 사용한 설계변수는 최대 8개이고, 고려한 제한조건은 좌굴, 응력 및 기하학적 제한조건으로 전체 21개이다.본 연구에서 적용한 설계예는 사각형, I형 및 T형 보강재를 갖는 원통셸이다. 사각형 및 I형의 경우는 기존의 연구결과와 비교하여 본 해석의 유용성 및 정밀도를 입증하고 보강재의 형태에 따른 효율성도 아울러 검토하고자 한다.

길이방향으로 보강된 복합재료 원통쉘의 자유진동 (Free Vibration of the Composite Laminated Cylindrical Shells Stiffened with the Axial Stiffeners)

  • 이영신;김영완
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2223-2233
    • /
    • 1996
  • The analytical solutions for the free vibration of cross-ply laminated composite cyllindrical shell with axial stiffeners(stringers) are presented usint the energy method. The stiffeners are taken to be smeared over the surface of shell with the smeared stffener theory. The effect of the parameters such as the stacking sequences, the shell thichness, the shell radius-to stringer depth ratio, the stringer depth-to width ratio, the shell length-to radius ratio are studied. By comparison with the previously published experimental results and the analytical results for the stiffened isotropic cylindrical shell and the unstiffened orthotropic composite laminated cylindrical shell, it is shown that natural frequencies can be determined with adequate accuracy.

원주방향 보강재와 직교방향 보강재의 형상에 따른 원통형 쉘에 대한 진동의 최적화에 관한 연구 (A Study on the Design Optimization of Vibrarion Characteristics for Stiffened Cylindrical Shells)

  • 장진건;이영신;김영완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.631-636
    • /
    • 2008
  • The cylindrical shells are mainly used in the nuclear energy structure, pressure vessel, boiler and so on. When designing of shell structures, predicting the structure change under variety boundary conditions are necessary for estimating the safety. Design variables for the design engineer include multiple material systems and boundary conditions, in addition to overall structural design parameters. Since the vibration of stiffened cylindrical shell is an important consideration for structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of stiffened cylindrical shell for maximum natural frequency was studied by analytic and numerical method.

  • PDF

직교보강된 복합재료 원통셀의 진동 및 좌굴해석 (Free Vibration and Buckling Analysis of the Composite Laminated Cylindrical Shells with the Orthogonal Stiffeners)

  • 이영신;김영완
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.349-354
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross-ply laminated composite cylindrical shell with axial stiffeners(stringers) and circumferential stiffeners(rings), that is, orthogonally stiffened shells, are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석 (Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression.)

  • 김조권
    • Composites Research
    • /
    • 제13권1호
    • /
    • pp.25-32
    • /
    • 2000
  • 국부압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴 및 후좌굴 거동을 개발한 유한요소프로그램을 이용하여 해석하였다. 후좌굴 해석은 판넬거동을 세 가지로 나누어 해석하였다. 판넬과 보강재를 모델링 하기 위하여 8절점응축 쉘요소를 도입하고 비선형유한 요소 수식화를 위해 2nd Piola-Kirchhoff 응력텐서와 Lagrangian 변형률 텐서를 채택하였다. 파손 특성을 고려하기 위해 점진적 파손해석을 도입하였다. 국부축하중을 받는 복합적층 만곡 판넬의 좌굴하중 및 좌굴후 극한하중, 국부좌굴과 전체좌굴, 그리고 보강재 영향이 인자별로 해석 비교 된다.

  • PDF

복합재료원통셸의 고유진동수 및 좌국하중에 대한 직교보강 특성 연구 (Study on the Orthogonal Stiffening Characteristics for the Natural Frequencies and Buckling Loads of the Composite Laminated Cylindrical Shells)

  • 이영신;김영완
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.457-467
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross -ply laminated composite cylindrical shell with the orthogonal stiffeners, i. e., axial stiffeners(stringers) and circumferential stiffeners(rings), are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

좌굴을 고려한 원통쉘 보강재의 최적설계에 대하여 (Optimum Design of Stiffeners in the Stiffened Cylindrical Shells Based on Structural Stability)

  • 장창두;한성곤
    • 전산구조공학
    • /
    • 제6권3호
    • /
    • pp.81-88
    • /
    • 1993
  • Ring과 Stringer로 보강된 원통형 Shell이 길이 방향 압축력과 횡압력을 받을 경우의 국부 및 전체 좌굴강도를 효율적으로 해석하고, 최적보강재의 치수를 설계하는 방법을 제안했다. 즉, 보강재의 이산성을 고려하고 각 보강재 설치방식에 따라 변위함수를 적절히 선정하여 좌굴 Mode를 조사함으로써 국부 및 전체좌굴 현상의 규명이 가능함을 밝혔다. 또한 국부좌굴 및 전체좌굴이 동시에 일어나는 조건으로부터 최적 보강재의 치수를 결정할 수 있음을 보였다.

  • PDF

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.