• Title/Summary/Keyword: stringent response

Search Result 36, Processing Time 0.022 seconds

ppGpp: Stringent Response and Survival

  • Jain Vikas;Kumar Manish;Chatterji Dipankar
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Adaptation to any undesirable change in the environment dictates the survivability of many microorganisms, with such changes generating a quick and suitable response, which guides the physiology of bacteria. During nutritional deprivation, bacteria show a stringent response, as characterized by the accumulation of (p)ppGpp, resulting in the repression of stable RNA species, such as rRNA and tRNA, with a concomitant change in colony morphology. However, genes involved in amino acid biosynthesis become over-expressed to help bacteria survive under such conditions. The survivability of pathogenic bacteria inside a host cell also depends upon the stringent response demonstrated. Therefore, an understanding of the physiology of stringent conditions becomes very interesting in regulation of the growth and persistence of such invading pathogens.

Interaction Between the Quorum Sensing and Stringent Response Regulation Systems in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 Strain

  • Oh, Kyung-Hwan;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.401-407
    • /
    • 2014
  • Quorum sensing and the stringent response are well-known regulation systems for the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). However, how these two systems interact is not well known. E. coli strains with mutations in two regulation systems, ${\Delta}luxS$ (ECM101) and ${\Delta}luxS{\Delta}relA{\Delta}spoT$ (ECM201), and the ${\Delta}luxS$ complement strain to ECM201 (ECM202) were created from EHEC O157:H7 EDL933 to investigate how the regulatory systems interact. The phenotypic changes of the mutant strains were characterized and compared with the wild type. The mutant strains exhibited no obvious growth defects, although acid resistance and cellular cytotoxicity were decreased significantly in all the mutant strains. Phenotypic characterization revealed that mutations in the stringent response system (ECM201 and ECM202) influenced the metabolic (defective utilization of arabinose and L-sorbose) and enzymatic activities (decreased trypsin activity, and increased ${\alpha}$-glucosidase activity). In contrast, the quorum sensing system mutant (ECM101) did not display these phenotypes. The motility of the quorum sensing system mutant (ECM101) was unchanged, but mutation in the stringent response system influenced the motility. Our results suggest that quorum sensing interacts with the stringent response regulation system.

Effects of Base Changes at the Transcription Start Site on Stringent Control of rnpB in Escherichia coli

  • Choi, Hyun-Sook;Park, Jeong Won;Hong, Soon Kang;Lee, Kangseok;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.212-215
    • /
    • 2008
  • The GC-rich discriminator sequence between the -10 region and the transcription start site of the rnpB promoter is responsible for stringent control of M1 RNA synthesis. The rnpB promoter also contains a G nucleotide at the previously identified transcription start site. In this study, we examined by mutagenesis of G to A whether this +1G nucleotide is involved in the stringent response. We found that the change did not alter the stringent response. Since the +1 mutation might alter transcription initiation, we compared the transcription start sites of the wt and mutant promoters by primer extension analysis. Surprisingly, we found that wild type rnpB transcription starts at both the +1G position (70%) and the -1C position (30%), and that the +1A mutation led to transcription initiation exclusively at the -1C position. We also generated two transversion mutations at the -1 position, both of which led to transcription starting exclusively at that position. The -1G mutant promoter gave a stringent signal similar to the wild-type, whereas the -1A mutant generated a significantly less stringent signal. Base on these results, we propose that a short sequence, up to 7 bp downstream of the -10 region, is involved in the stringent response of the rnpB promoter.

Pathophysiology of enteropathogenic Escherichia coli during a host infection

  • Lee, Jun Bong;Kim, Se Kye;Yoon, Jang Won
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.28.1-28.18
    • /
    • 2022
  • Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.

Effects of flaC Mutation on Stringent Response-Mediated Bacterial Growth, Toxin Production, and Motility in Vibrio cholerae

  • Kim, Hwa Young;Yu, Sang-Mi;Jeong, Sang Chul;Yoon, Sang Sun;Oh, Young Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.816-820
    • /
    • 2018
  • The stringent response (SR), which is activated by accumulation of (p)ppGpp under conditions of growth-inhibiting stresses, plays an important role on growth and virulence in Vibrio cholerae. Herein, we carried out a genome-wide screen using transposon random mutagenesis to identify genes controlled by SR in a (p)ppGpp-overproducing mutant strain. One of the identified SR target genes was flaC encoding flagellin. Genetic studies using flaC and SR mutants demonstrated that FlaC was involved in bacterial growth, toxin production, and normal flagellum function under conditions of high (p)ppGpp levels, suggesting FlaC plays an important role in SR-induced pathogenicity in V. cholerae.

Bacterial Stringent Signal Directs Virulence and Survival in Vibrio cholerae.

  • Oh, Young Taek;Kim, Hwa Young;Yoon, Sang Sun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.8-8
    • /
    • 2019
  • The stringent response (SR) is characterized as a bacterial defense mechanism in response to various growth-inhibiting stresses. It is activated by accumulation of a small nucleotide regulator, (p)ppGpp, and induces global changes in bacterial transcription and translation. Recent work from our group has shown that (p)ppGpp plays a critical role in virulence and survival in Vibrio cholerae. The genes, relA and relV, are involved in the production of (p)ppGpp, while the spoT gene encodes an enzyme that hydrolyzes it in V. cholerae. A mutant strain defective in (p)ppGpp production (i.e. ${\Delta}relA{\Delta}relV{\Delta}spoT$ mutant) lost the ability to produce cholera toxin (CT) and lost their viability due to uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ${\Delta}relA{\Delta}spoT$ mutant, a (p)ppGpp overproducer strain, produced enhanced level of CT and exhibited better growth in glucose supplemented media via glucose metabolic switch from organic fermentation to acetoin, a neutral fermentation end product, fermentation. These findings indicates that (p)ppGpp, in addition to its well-known role as a SR mediator, positively regulates CT production and maintenance of growth fitness in V. cholerae. This implicates SR as a promising drug target, inhibition of which may possibly downregulate V. cholerae virulence and survival fitness. Therefore, we screened a chemical library and identified a compound that induces medium acidification (termed iMAC) and thereby loss of wild type V. cholerae viability under glucose-rich conditions. Further, we present a potential mechanism by which the compound inhibits (p)ppGpp accumulation. Together, these results indicate that iMAC treatment causes V. cholerae cells to produce significantly less (p)ppGpp, an important regulator of the bacterial virulence and survival response, and further suggesting that it has a therapeutic potential to be developed as a novel antibacterial agent against cholera.

  • PDF

Differential Stringent Responses of Streptomyces coelicolor M600 to Starvation of Specific Nutrients

  • Ryu, Yong-Gu;Kim, Eun-Sook;Kim, Dae-Wi;Kim, Sung-Keun;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.305-312
    • /
    • 2007
  • This study focused on the involvement of the unusual nucleotide (p)ppGpp, a stringent factor, during the morphological and physiological differentiation of Streptomyces coelicolor. Two genes, relA and rshA, were disrupted to demonstrate the roles of the stringent factor in the differentiation. The intracellular concentration of (p)ppGpp in the wild-type (M600) and disrupted mutants was measured in relation to the intentional starvation of a specific nutrient, such as carbon, nitrogen, and phosphate or the in situ depletion of nutrients in a batch culture. As a result, it was found that the morphological characteristic of the ${\Delta}relA$ mutant was a bld phenotype forming condensed mycelia, whereas the ${\Delta}rshA$ mutant grew fast-forming spores and straightforward mycelia. In both mutants, the production of actinorhodin (Act) was completely abolished, yet the undecylprodigiosin (Red) production was increased. Intracellular (p)ppGpp was detected in the ${\Delta}relA$ mutant in the case of limited phosphate, yet not with limited carbon or nitrogen sources. In contrast, (p)ppGpp was produced in the ${\Delta}rshA$ mutant under limited carbon and nitrogen conditions. Therefore, (p)ppGpp in S. coelicolor was found to be selectively regulated by either the RelA or RshA protein, which was differentially expressed in response to the specific nutrient limitation. These results were also supported by the in situ ppGpp production during a batch culture. Furthermore, it is suggested that RelA and RshA are bifunctional proteins that possess the ability to both synthesize and hydrolyze (p)ppGpp.

Stringent Factor Regulates Antibiotics Production and Morphological Differentiation of Streptomyces clavuligerus

  • RYU , YONG-GU;JIN, WOOK;KIM, JIN-YOUNG;KIM, JAE-YOUNG;LEE, SANG-HEE;LEE, KYE-JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1170-1175
    • /
    • 2004
  • The involvement of the relA and rsh genes in the morphological and physiological differentiation of Streptomyces clavuligerus was evaluated with the relA and rsh genes mutants. The morphological differentiation of S. clavuligerus was greatly affected by the disruption of the relA gene, but not very much by the disruption of the rsh gene. The altered morphological characteristics were completely restored by the complementation of the corresponding disrupted genes. Thus, it was apparent that the mycelial morphology and clavulanic acid production were severely affected by the disruption of the relA gene. Production of clavulanic acid in the submerged batch culture and glycerol-limited chemostat showed that production was inversely related to the specific growth rate in the wild-type strain. However, the production of clavulanic acid in the ${\Delta}relA$ and ${\Delta}rsh$ null mutants was completely abolished. Therefore, it seems plausible that the stringent response of S. clavuligerus to starvation for amino acids is governed mainly by ReIA, rather than Rsh, and that the (p)ppGpp synthesized immediately after the depletion of amino acids triggers the initiation of pathways for both morphological and physiological differentiation in this species.

Estimation of Wall Wetting fuel by FRFID in an S.I. Engine (가솔린엔진에서 FRFID를 이용한 액막 연료량 추정)

  • 황승환;이종화;유재석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.63-70
    • /
    • 1998
  • According to the stringent exhaust emission regulation control of air fuel ratio is one of the most important issues on gasoline engine. Although many researches have been carried out to identify the fuel transport phenomena in a port fueled gasoline engine, complexity of fuel film behavior in the intake port makes it difficult. The fuel film behavior was investigated recently by using visualization method and these gave us qualitative understanding. In this paper, the quantitative measurement method for the port fuel film is studied by using Fast Response Flame Ionization Detector(FRFID). The mass of fuel film on the port wall was measured by using the methods of fuel injection off, injection on and regression. The Fuel film mass was increased with incresing load at the same engine speed.

  • PDF