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ABSTRACT

Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing 
countries. However, sporadic outbreaks caused by this microorganism in developed countries 
are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored 
annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing 
(A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract 
(GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses 
by EPEC have been reported. These responses play significant roles in helping E. coli pass 
through GIT environments and establishing E. coli infection. Stringent response is one of those 
responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have 
demonstrated that stringent response is a universal virulence regulatory mechanism present 
in many bacterial pathogens including EPEC. However, biological signficance of a bacterial 
stringent response in both EPEC and its interaction with the host during a GIT infection is 
unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, 
diverse responses, including stringent response, of EPEC during a GIT infection are discussed 
to provide a new insight into EPEC pathophysiology in the GIT.
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INTRODUCTION

Enteropathogenic Escherichia coli (EPEC) has been a major cause of infant diarrhea in 
developing countries during the 20th century [1]. Remarkable advances in EPEC research 
in the 1980s and early 1990s have been achieved to understand how EPEC causes diarrhea, 
focusing on its mechanisms [2]. Although the number of EPEC outbeak cases was decreased 
by develping appropriate therapeutic interventions and improving sanitary conditions in 
the early 2000s [3], recent surveilance data on food-borne outbreaks imply a possible re-
emergence of EPEC infections in humans [4,5]. Since EPEC is an enteric bacterial pathogen, 
it is improtant to understand its pathophysiology during a gastrointestinal track (GIT) 
infection as such understanding can provide a novel insight to intervention measures for 
controlling re-emerging diseases caused by EPEC. In this review, we especially focus on 
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how EPEC interacts with diverse environmnets in the GIT during a host infection, including 
molecular pathogenesis [2,6].

RE-EMERGENCE OF EPEC

Bacterial pathogens have been serious concerns to global health under the concept of 
One Health [7]. Among them, Escherichia coli is an etiological agent that causes significant 
mortality of children and young animals in the world [1,8]. Zoonotic E. coli is often 
transmitted between humans and livestock animals. It is an important threat to public 
health and livestock industry. Transmission of E. coli occurs primarily via consumption of 
contaminated water and foods such as undercooked meat products and raw milk [9]. In 
recent years, many E. coli outbreaks are caused by consumption of agricultural produce such 
as romaine lettuce, which is likely to be contaminated by animal feces during cultivation or 
handling [10]. Direct contact with livestock, companion animals, and wild animals has also 
been suggested as a transmission route of E. coli infection [11].

E. coli is a Gram-negative, facultative, and rod-shaped bacterium that can colonize GITs of 
warm-blood animals [12]. Most E. coli strains are harmless. They are predominantly parts of 
normal GIT flora. However, some pathogenic E. coli have acquired specific virulence factors, 
which allow them to cause intestinal or extraintestinal diseases [13]. Based on their clinical 
manifestations, pathogenic E. coli can be devided into three pathovars: (i) diarrheagenic E. 
coli, (ii) uropathogenic E. coli, and (iii) sepsis and meningitis-associated E. coli. Diarrheagenic 
E. coli can be further classified into six pathotypes based on their different abilities to induce 
diarrheal diseases: (i) enteropathogenic E. coli (EPEC), (ii) enterohaemorrhagic E. coli (EHEC), 
(iii) enterotoxigenic E. coli (ETEC), (iv) enteroaggregative E. coli (EAEC), (v) enteroinvasive 
E. coli (EIEC), and (vi) diffusely adherent E. coli (DAEC) [14]. Among them, EPEC was the 
first recognized pathotype of diarrheagenic E. coli that could cause human diseases. This 
microorganism was first reported by John Bray in 1945 as a causative agent of infantile 
diarrhea in England [15].

Initially, EPEC caused frequent outbreaks of infantile diarrhea in United States and United 
Kingdom in 1940s and 1950s [16]. Although its occurence disappeared in developed countries 
after 1950s, EPEC became a major cause of infantile diarrhea in developing countries 
during the 20th century. EPEC infection was responsible for 5%–10% of infantile diarrhea 
in developing countries such as Brazil, Chile, Peru, and Iran [17]. However, recent studies 
suggest that EPEC seems to re-emerge in developed countries such as Northern Europe, 
Oceania, and East Asia. In Norway, for example, EPEC is one of the most common pathogens 
founded in stools of hospitalised patients with diarrhea. A total of 122 EPEC were isolated 
from diarrheal stools in a Norway university hospital during 2013–2015 [18]. In Finland, EPEC 
caused an outbreak of diarrhea in 237 human patients due to consumption of contaminated 
salads in 2016 [4]. In Australia, a total of 61 EPEC clinical isolates between 2008 and 2011 
were analyzed [19]. In New Zealand, 21 EPEC were isolated from diarrheal stool samples 
from a public hospital during four months of 2014 [20]. High prevalence of EPEC from 
diarrheal patients has been also reported in East Asia. In South Korea, EPEC has caused a 
total of 26 diarrheal outbreaks during 2009-2010, affecting 1,791 human patients [21]. A high 
incidence of EPEC in diarrheal patients has been reported in Japan [22]. Collectively, these 
epidemiological reports strongly suggest that a great public health concern is necessary to 
control and prevent a zoonotic diarrheal EPEC infection locally, nationally, and globally.
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EPEC can also induce diarrheal diseases in animals, causing huge economic losses of the 
livestock industry [23]. The prevalence of EPEC in calves and piglets with diarrheal diseases 
has been previously reported. In Belgium, a total of 104 EPEC strains were isolated from 
calves with diarrhea at 42 domestic farms during 2008–2015 [24]. Interstingly, 42 of these 
104 EPEC isolates were serotyped as O80:H2 closely related to EHEC O80:H2 isolated 
from human patients during 2013–2016 [25]. In Spain, 156 EPEC strain were isolated from 
suckling or weaning piglets with diarrhea between 2006 and 2016 [26]. Among them, four 
colistin-resistant EPEC isolates harboring mcr-1 gene were clustered into sequence type (ST) 
10 clonal complex together with ETEC and EHEC porcine isolates carrying the mcr-1 gene. 
These results suggest that EPEC isolates from animals have zoonotic potential. They are likely 
to spread antibiotic resistance genes in their clonal lineage. Moreover, EPEC is one of the 
most important enteropathogens in companion animals that can cause acute gastroenteritis, 
vomiting, diarrhea, and dehydration in infected dogs and cats [27,28]. Majority of EPEC 
isolates from diarrheal dogs and humans in Brazil were clustered together into ST 10 clonal 
lineage, implying their zoonotic risks [29].

MAJOR VIRULENCE FACTORS OF EPEC

EPEC produces a characteristic histopathological lesion in the GIT known as an attaching 
and effacing (A/E) lesion [30]. An A/E lesion occurs by serial events including (i) initial 
attachment of EPEC to small intestinal epithelial cells, (ii) formation of microcolony, (iii) 
effacement of brush border microvilli, (iv) intimate attachment to cell membrane, and (v) 
actin polymerization beneath the attached EPEC [6, 31]. EPEC has two major virulence 
factors responsible for the formation of an A/E lesion: type IV bundle forming pilus (BFP) and 
the locus of enterocyte effacement (LEE) (Fig. 1).

Type IV BFP
Type IV BFP is defined as a dynamic fibrillar organelle that can extend out and retract 
into bacterial surface [32]. BFP initiates a long-range, non-intimate attachment of EPEC 
to intestinal epithelial cells [33]. Subsequently, BFP recruits individual EPEC cells into 
aggregates, resulting in the formation of microcolony on host membrane. Such adherence 
pattern of EPEC is referred to as a localized adherence (LA) phenotype [34]. Fourteen 
genes for biogenesis of BFP are encoded in a ~80 kb plasmid (pEAF), which produces EPEC 
adherence factor (EAF) [35]. Therefore, a pEAF-cured strain could not form a typical LA 
phenotype [36]. Plasmid encoded regulator A (PerA) is known to activate the expression of 
BfpA, which is the major pilus subunit, so called pre-bundlin [37]. Processing of pre-bundlin 
to its mature form is mediated by prepilin peptidase, BfpP [38]. In addition, two nucleotide-
binding proteins, BfpD and BfpF, mediate pilus extension and retraction, respectively. BfpD 
promotes the aggregation of EPEC, whereas BfpF separates EPEC cells from aggregates for 
the next step of the infectious process [39,40]. Dissociation of aggregates by BfpF permits 
the intimate attachment of individual EPEC cells on host membrane, allowing effective 
translocation of bacterial effector proteins via type III secretion system (T3SS) [41].

LEE
After dissociation of bacterial aggregates, EPEC expresses LEE for intimate attachment. 
LEE is a well-known pathogenicity island in genomes of bacteria including EPEC, EHEC, 
Escherichia albertii, and Citrobacter rodentium [42]. In EPEC, a 35,624-bp LEE pathogenicity 
island (LPI) contains 41 genes in five major polycistronic operons (LEE1 to LEE5) [43,44]. 
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LEE1, LEE2, and LEE3 encode genes for synthesis and assembly of T3SS, a machinery that 
transfers bacterial effector proteins into host cells [45]. LEE-encoded T3SS structure is 
composed of three major components: (i) a needle complex in the outer membrane (EscC, 
EscD, EscF, EscI, and EscJ), (ii) an export apparatus in the inner membrane (EscRST, EscU, 
and EscV), and (iii) a cytoplasmic sorting platform (EscA, EscK, EscL, EscN, and EscQ) [46]. 
LEE4 encodes genes for extracellular proteins secreted by T3SS (EspA, EspB, and EspD) 
and forms a translocation apparatus [47]. Six LEE-encoded effectors (Tir, Map, EspF, EspG, 
EspZ, and EspH) are translocated into host cells via the EspABD translocon apparatus. These 
effectors can induce tight junction disruption, mitochondrial dysfunction, and membrane 
filopodia formation in host cells [48]. Furthermore, EspB itself is an effector of T3SS. It 
contributes to microvilli effacement [49]. LEE5 encodes genes for adhesin (Intimin) and its 
translocated receptor (Tir), which mediate intimate attachment of EPEC. Intimin is a 94 kDa 
outer membrane protein of EPEC and Tir is an effector protein translocated into the host 
cell membrane via T3SS [50]. Binding of intimin to Tir enables EPEC to attach intimately 
on cell membrane [51]. After intimate attachment, tyrosine residues in the cytoplasmic 
domain of Tir are phosphorylated by host cell kinases derived from Ab1/Arg, Src, and Tec 
families [52]. Phosphorylated Tir can bind two adaptor proteins, Nck1 and Nck2, to recruit 
actin nucleation-promoting factor, N-WASP [53]. N-WASP activates the Arp2/3 complex that 
assembles actin beneath EPEC [54]. These signaling events generate characteristic actin-rich 
pedestals on host cell membrane accompanied by inflammatory response and diarrhea [55].
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1. Initial adherence

Note. Adapted from “Diarrheagenic Escherichia coli” by J. P. Nataro and J. B. Kaper, 1998,
Clin Microbiol Rev, 11(1):142–201. Copyright 1998, American Society for Microbiology
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Fig. 1. AE lesion formation by Type IV BFP and LEE of EPEC on the small intestine. (i) Type IV BFP and its activator Per mediate the initial adherence and 
microcolony formation of EPEC on epithelial cell layers. (ii) After dispersal of microcolonies, EPEC activates LEE operons to translocate T3SS effector proteins 
into epithelial cells via EspABD complex, causing effacement of microvilli. (iii) Adhesin intimin binds to Tir located at epithelial cell surface, allowing EPEC to 
attach intimately on cells. Phosphorylated Tir recruits host cellular proteins to induce actin polymerization beneath attached EPEC. 
EAF, EPEC adherence factor; BFP, bundle forming pilus; LEE, locus of enterocyte effacement; Tir, translocated receptor; A/E, attaching and effacing; EPEC, 
Enteropathogenic Escherichia coli.
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STRESS RESPONSES OF EPEC IN HOST ENVIRONMENTS

Acid resistance
EPEC encounters diverse environments during a GIT infection. Although EPEC posesses 
key virulence factors such as Type IV BFP and LEE, their enviroment-dependent and timely 
expression is very important for establishing bacterial infection in the GITs. It is well known 
that various environmental cues such as pH, immune response, nutrients limitation, and 
so on can induce bacterial stress responses, leading to the expression of virulence factors at 
the appropriate time and place [56]. For instance, the extremely low pH (1.5 to 3.0) in the 
stomach can trigger the acid resistance system in bacteria to survive for approximately 2 h 
[57]. Pathogenic E. coli including EPEC possess four acid resistance systems (AR1 to AR4) 
when exposed to enviroments with acidic pH. The AR1 is an oxidative acid resistance system 
repressed by glucose [58]. This system requires an alternative sigma factor, RpoS, which 
controls gene expression by interacting with RNA polymerase [59]. A previous study has 
demonstrated that the lack of RpoS strongly impairs the acid resistant phenotype of EPEC [60].

Molcular mechanism of AR1 has not been determined, although it is known that AR2 to 
AR4 require extracellular amino acids such as glutamate, arginine, and lysine. AR2 is known 
to be the most effective acid resistance system for protecting E. coli at an extremely low 
pH condition [61]. It contains three components: glutamate decarboxylases alpha, beta 
(GadA, GadB), and a glutamate/gamma-aminobutyric acid antiporter (GadC) [62]. Under 
acidic conditions, GadC can exchange extracellular glutamate and intracellular gamma-
aminobutyric acid (GABA). Subsequently, GadAB can convert externally-derived glutamate 
to GABA, expelling intracellular protons to the extracellular space via GadC [63], resulting in 
maintaining the internal pH of E. coli. Similar to AR2, AR3 contains an arginine decarboxylase 
alpha (AdiA) and a arginine/agmatine antiporter (AdiC), while AR4 has a lysine decarboxylase 
alpha (CadA) and a cadaverine/lysine antiporter (CadB) [64,65]. All these four acid resistance 
systems help EPEC pass through a gastric stomach and reach the small intestine.

Inhibition of phagocytosis
In the small intestine, EPEC can adhere to not only absorptive cells, but also microfold cells 
(M cells) of peyer’s patches [66,67]. Since peyer’s patches are surrounded by host immune 
cells (B cells, T cells, dendritic cells, and macrophages), EPEC is known to induce acute 
immune responses as early as 12 h post infection [68]. M cells can facilitate the uptake of 
EPEC by endocytosis and deliver them to resident macrophages in subepithelial space [69]. 
Macrophages are crucial phagocytes and sentinel cells in body’s first line of defense [70]. 
Phagocytosis proceed through serial steps including (i) bacterial binding to receptors on 
macrophages, (ii) activation of intracellular signal pathways, (iii) pseudopod extension 
by actin rearrangement and membrane expension, and (v) bacterial internalization into 
phagosome [71]. Interestingly, EPEC can inhibit phagocytosis to evade E. coli death in 
macrophages. Previous studies have demonstrated that EPEC can secrete T3SS effector 
proteins to impair phagocytosis. For example, EspB can interfere with pseudopod 
extension and phagosome closure of macrophages [49]. EspF can inhibit phosphoinositide 
3-kinase (PI3K) dependent F-actin rearrangement [72]. EspJ can prevent opsonization with 
immunoglobulin G (IgG) and a complement component iC3b [73]. EspH can repress the 
activation of Rho guanine nucleotide exchange factors (RhoGEF), which regulates actin 
rearrangement [74]. These T3SS effectors allow EPEC to bypass host immune responses and 
enable successful colonization in the small intestine.
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Modulation of inflammatory signaling pathways
In addition to phagocytosis, macrophages can recognize pathogen associated molecular 
patterns (PAMPs) to activate inflammatory responses for recruiting immune cells to 
pathogens [75]. EPEC possesses many PAMPs such as lipopolysaccharides (LPS), flagellin, 
and outer membrane vesicles (OMVs) that can promote inflammatory signaling pathways 
in host cells [76]. For example, flagellin of EPEC can activate MAPK signaling pathways 
and induce IL-8 secretion [77]. On the other hand, EPEC can also secrete T3SS effector 
proteins to subvert PAMPs-induced inflammatory responses in host cells (Fig. 2) [78,79]. 
Previous studies have demonstrated that Tir and non-LEE encoded effectors such as NleB 
and NleE can inhibit NF-κB signaling pathways [80-82]. Other effectors (NleC, NleH) can 
directly target the NF-κB complex to prevent its nuclear translocation [83,84]. Since NF-κB 
is a prerequisite for the activation of NLRP3 inflammasome, all effector proteins targeting 
NF-κB can suppress NLRP3 activity [85]. EPEC can also secrete NleA and NleF, which 
directly target the NLRP3 complex to block caspases activation [86,87]. In contrast, some 
T3SS effector protiens such as EspB are known to trigger inflammatory signaling pathways 
for recruiting neutrophils to EPEC [88]. A recent study has shown that EPEC can activate 
NLRP3 inflammasome signaling pathways by T3SS effector proteins, distinct from those 
by LPS transfection or non-pathogenic E. coli infection [89]. Taken together, these findings 
suggest that there EPEC might have certain sophisticated mechanisms to modulate host 
inflammatory responses by T3SS effector proteins.
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Fig. 2. Inhibitory effects of T3SS effector proteins of EPEC on inflammatory signaling pathways in host cells. T3SS effector proteins inhibit the activation of NF-κB 
and NLRP3 signaling pathways in host cells. Tir and NleB inhibit TRAF signaling. Tir recruits SHP1/2 to inhibit TRAF6 and NleB glycosylates GAPDH to suppress 
TRAF2. NleE inactivates TAB2/3, a downstream signal molecue of TRAF. NleC and NleH target the NF-κB complex. Protease NleC cleaves p65 subunit of NF-κB 
complex and NleH prevents nuclear translocation of RPS3 subunit of NF-κB complex. NleA and NleF target NLRP3 inflammasome complex. NleA blocks the 
assembly of NLRP3/ASC/Caspase-1 complex and NleF inhibits Caspase-8 activation. 
EPEC, Enteropathogenic Escherichia coli; TNF-α, tumor necrosis factor alpha; LPS, lipopolysaccharides; IL, interleukin; LEE, locus of enterocyte effacement; Tir, 
translocated receptor; NF, nuclear factor.
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Nutrient acquisition from host
To limit bacterial pathogenicity during a host infection, host cells should sequester nutrients 
such as carbon and iron from EPEC [90,91]. Thus, EPEC must compete with host cells 
for nutrients, which are essential for bacterial growth and virulence. A previous study has 
demonstrated that EPEC can produce LEE-encoded T3SS injectisome components, so called 
“CORE,” in order to extract nutrients from host cells [92]. CORE can mediate the formation 
of another protuding membranous nanotube, allowing EPEC to directly extract nutrients 
from host cell cytoplasm. It has been shown that all EPEC clinical isolates can execute a 
CORE-dependent nutrient acquisition, whereas a non-pathogenic E. coli K12 strain fails to do 
so. In addition, it has been reported that EPEC can inhibit the uptake of vitamin B1 (thiamin) 
in host intestinal epithelial cells by T3SS effector proteins EspF and EspH [93].

STRINGENT RESPONSE OF EPEC

Stringent response and guanosine tetraphosphate
In addition to struggling for nutrients, EPEC also needs to re-allocate its cellular resources 
and save energy by repressing biosynthesis of DNA, stable RNA (ribosomal RNA and transfer 
RNA), and ribosomal proteins [94]. This so-called “hunger response” occuring in bacteria 
has been referred to as a stringent response. It is known that a stringent response is mediated 
by a guanosine tetraphosphate (ppGpp), a nucleotide-based signaling molecule [95]. When 
E. coli faces depletion of nutrients, both RelA (a monofunctional ppGpp synthetase) and SpoT 
(a bifunctional ppGpp synthetase and hydrolase) rapidly increase intracellular concentration 
of ppGpp [96]. ppGpp controls the expression of numerous stringent response genes in 
cells by binding to RNA polymerase (RNAP). Three mechanisms have been proposed to 
explain how ppGpp binding alters the transcriptional activity of RNAP: (i) ppGpp can bind 
to the secondary channel of β’-subunit and cause an allosteric signal transduction to the 
RNAP active site that contains catalytic Mg2+, hence regulating the catalytic activity of RNAP 
[97]; (ii) ppGpp can bind to mobile modules (shelf and core domains) and form a shelf-core 
ratcheting, resulting in conformational changes of RNAP, through which ppGpp can regulate 
the stability of RNAP-promoter complexes [98]; and (iii) ppGpp can reduce the affinity 
of housekeeping σ-factor (σ70) to core RNAP, thus promoting the binding of alternative 
σ-factors (σ*) to core RNAP. This σ-factor competition can direct RNAP to transcribe a set 
of stringent response genes [99]. Thus, E. coli can alter various physiological and cellular 
processes such as growth and morphology during a stringent response [100,101].

Environmental cues for stringent response in EPEC
In 1969, ppGpp was first discovered by Michael Cashel and collegues who identified two 
unusual spots from amino acid-starved E. coli cells using thin layer chromatography [95]. 
These ‘magic spots’ were generated by addition of a pyrophosphate (PPi) to the 3’ carbon 
of guanosine diphosphate (GDP) and guanosine triphosphate (GTP), collectively referred 
to as ppGpp [102]. Various environmental cues are known to induce ppGpp synthesis in 
EPEC (Fig. 3). Deficiency of amino acid can result in the accumulation of uncharged transfer 
RNA (tRNA), which binds to ribosomal A site. A ribosome-associated enzyme, RelA, can 
sense the presence of uncharged tRNA in A site and synthesize ppGpp to initiate a stringent 
response [103]. Another enzyme, SpoT, can mediate the stringent response when various 
nutrients including phosphate, carbon, iron, and unacylated fatty acids are limited [104]. For 
instance, depletion of fatty acids can lead to accumulation of unacylated acyl carrier proteins 
(ACP) that bind to threonly-tRNA synthetase, GTPase, and SpoT (TGS) domain of SpoT 

https://doi.org/10.4142/jvs.21160

EPEC responses to diverse gut environments



8/18https://vetsci.org

[105]. Such binding influences the bifunctional activity of SpoT, with its synthetic acitity 
being increased while its hydrolytic activity being decreased. Other environmental cues such 
as high osmolarity, oxidative burst, and extreme pH can also trigger a stringent response 
[106-108]. To survive in the stomach, enteropathogens can utilize ppGpp in response to 
acidic stress. For example, ppGpp can bind to lysine decarboxylase and regulate its activity 
in E. coli, confering an acid resistant phenotype [108]. In Helicobacter pylori, ppGpp is rapidly 
synthesized in response to pH downshift [109]. Besides, host immune responses to bacteria 
can trigger a stringent response. For example, harsh environments in macrophage such 
as iron sequestration, oxidative burst, and acidic pH in phagosome can trigger bacterial 
stringent response [110-112]. To survive in macrophages, intracellular bacterial pathogens 
can synthesize ppGpp to induce their specialized virulence determinants [94]. Furthermore, 
heat shock, high density population in stationary phase, and biofilm formation can induce 
a stringent response [113-115]. Taken together, various environmental cues can trigger 
bacterial stringent response, implying that this adaptive response is closely related to EPEC 
pathogenesis during a host infection.
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Fig. 3. Various environmental cues that induce stringent response in EPEC. Bacterial stringent response is induced by various environmental cues such as 
amino acid starvation, acidic pH, localized famine in cell aggregates, stationary growth phase, and host immune responses. In response to signals, RelA and 
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Stringent response and virulence factors of EPEC
Bacterial stringent response is important for the regulation of its virulence, invasion, and 
persistence [116]. In case of EPEC, a previous study has constructed a single ΔrelA mutant 
of LRT9 strain (EPEC O111:abH2) to examine its expression level of adhesins and adherent 
efficiency compared to those of a wildtype strain [117]. Expression levels of two adhesins 
(BFP and Intimin) and their regulator Per were decreased in this single ΔrelA mutant, which 
adherent rate was 75% lower than that of the wildtype strain [117]. This result suggested that 
ppGpp levels reduced by RelA inactivation diminished the adherence of EPEC. Interestingly, 
ppGpp is known to increase the expression of LEE-encoded genes in EHEC [118]. Compared 
to EPEC, EHEC has a 43,359-bp LPI containing additional 13 ORFs of a cryptic prophage 
at the 5’ end. However, nucleotide sequences of major regions (LEE1 to LEE5) of EHEC 
share 93.9% similariteis with those of EPEC [119]. ppGpp can activate both LEE-encoded 
regulator (Ler) and Pch to increase the expression of LEE genes [118,120]. Pch is a non-
LEE encoded transcription regulator of the LEE operon in EHEC [118,121]. Since EPEC has 
Per, a Pch homologous protein encoded in pEAF, further studies about EPEC are needed 
to unveil the relationship between ppGpp and LEE expression. In addition, it has been 
reported that ppGpp can regulate the biosynthesis of lipid A, a highly conserved structure 
of Gram-negative bacteria [122,123]. Lipid A is an innermost component of LPS (also called 
endotoxin) causing host cell damages [124]. In E. coli, ppGpp controls the degradation of 
enzyme LpxC that catalyzes the deacetylation at C-2 position (UDP-3-O-acyl-GlcNAc) of 
lipid A [123]. According to cellular needs for lipid A biosynthesis, LpxC is degraded in slow-
growing cells, but stabilized during fast growth. However, it should be noted that the lack of 
ppGpp deregulates the LpxC degradation. Further studies are needed to elucidate the role of 
ppGpp-mediated LpxC degradation in EPEC pathogenesis.

Stringent response and host immunity
Based on the fact that EPEC can modulate host immune responses, its full virulence depends 
on host immunity. However, it is unclear if a stringent response can modulate host immune 
responses to EPEC. A few studies have addressed the role of stringent response in modulating 
host immune responses to other bacteria. For example, intracellular bacterial pathogens 
require ppGpp to replicate in phagocytes. In Salmonella Typhimurium, ppGpp can activate 
SlyA to transcribe antimicrobial peptides resistance genes [125]. In Francisella tularensis, ppGpp 
can activate PigR, which interacts with MglA-SspA complex to express genes for phagosome 
escape [126]. In Legionella pneumophila, ppGpp can activate two non-coding regulatory RNAs 
(RsmY and RsmZ) to sequester carbon storage regulator (CsrA) from target mRNA [127]. CsrA 
is a transcriptional repressor that can bind to mRNAs of genes for bacterial transmission in 
phagocytes. Therefore, inhibiting CsrA by ppGpp can promote the transmission of L. pneumophila 
for evading phagosome. Another study has examined host inflammatory responses to ppGpp-
defective bacterial pathogens. Guinea pigs infected with ppGpp-defective Mycobacterium 
tuberculosis show lower transcription levels of interferon gamma (IFN-γ) and tumor necrosis 
factor alpha (TNF-α) in lungs than those infected with its wildtype strain [128]. In Salmonella 
spp, a ppGpp-defective mutant strain has been used to develop a live attenuated vaccine. 
Interestingly, immunization with a ppGpp-defective S. Typhimurium can elicit significant IgG 
and IgA antibodies in BALB/c mice and confer protective immunity against the wildtype strain 
[129]. Likewise, immunization with a ppGpp-defective S. Gallinarum can elicit both IgG and 
IgA in chicken, allowing protective immune responses to the wildtype strain [130]. These results 
demonstrate significant increases in the proliferation of T cells as well as the expression of both 
IFN-γ and TGF-β4 in chicken. Taken together, these results imply that EPEC can also induce 
stringent response to modulate host immune responses like other bacterial pathogens.
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Anti-infective strategy targeting stringent response
Stringent response-mediated regulation of virulence factors and host immunity can affect the 
degree of bacterial virulence in vivo. Previous studies have analyzed the virulence of ppGpp-
defective mutants of bacterial pathogens using animal infection models. In general, their 
virulence are attenuated, implying that stringent response contributes to bacterial full virulence 
[128,131-133]. Therefore, inhibiting stringent response has been suggested to be a novel 
antibacterial strategy to weaken bacterial pathogens. Anti-infective molecules targeting stringent 
response could substitute for conventional antbiotics in order to fight antimicrobial resistant 
bacteria. For example, Relacin is a synthetic ppGpp analogue that can inhibit RelA and SpoT 
homologue family of Bacillus species [134]. This molecule can block ppGpp synthesis and disrupt 
essential phenotypes such as biofilm formation and sporulation of B. subtilis. Relacin and its 
derivatives can also inhibit RelA enyzmes of Gram-negative bacteria, showing a broad-spectrum 
activity [135]. Other synthetic ppGpp analogues can prevent ppGpp accumulation by specific 
binding to Rel enzyme in Mycobacterium smegmatis [136]. Those molecules can inhibit Rel-mediated 
ppGpp synthesis in a dose-dependent manner and prevent biofilm formation and long-term 
persistence of M. smegmatis. In addition to nucleotide inhibitors, a synthetic peptide 1018 can 
degrade intracellular ppGpp and interfere with biofilm formation of Pseudomonas aeruginosa, 
Acinetobacter baumannii, Klebsiella pneumoniae, Syaphylococcus aureus, Salmonella Typhimurium, and 
Burkholderia cenocepacia [137]. In a murine cutaneous abscess model, treatment of P. aeruginosa with 
synthetic peptides (1018 and DJK-5) can suppress spoT promoter activity during abscess formation 
and result in virulence attenuation, leading to decreased abscess size and reduced bacterial 
colony forming unit recovered from the absecess [138]. These phenotypes are similar to those of 
a ppGpp-defective P. aeruginosa mutant infection. Collectively, all proposed molecules targeting 
stringent response could be applied as novel anti-infective agents against EPEC.

CONCLUSION

EPEC is a major zoonotic pathogen causing diarrhea in both developing and developed 
countries. This microorganism can produce Type IV BFP and LEE necessary for the formation 
of a characteristic intestinal histopathology called AE lesion. Although molecular machanisms 
of individual virulence factors of EPEC are clearly defined, the pathogenesis of EPEC remains 
unclear because it can trigger diverse stress responses to environmental cues during a host 
infection. Numerous viruelnce genes of EPEC are under the control of stress responses to 
environmental cues including acidic pH, phagocytosis, inflammatory response, and nutrient 
limitation. Sophisticated regulation of virulence factors by stress responses allows EPEC to 
establish a successful infection. One of these stress responses under nutrient limitation is 
stringent response, which is mediated by ppGpp. Stringent response can also be induced by 
other stressful conditions in host gut environments. Its biological significance on pathogenesis 
has been confirmed in other bacteria. However, very few studies have documented the role 
of stringent response in both EPEC and its host immune response. Elucidation of the role of 
stringent response in EPEC will provide a deeper understanding on EPEC pathogenesis.

Since ppGpp is a master regulator of stringent response, it has become a novel target for 
attenuating the virulence of bacteria. High-throughput screening assay for the identification 
of new compounds that can inhibit ppGpp synthesis is strongly recommended for molecular 
targeted therapy. In addition, further studies aiming to understand immunomodulatory 
effects of a ppGpp-defective EPEC could offer great opportunitis to develop a new vaccine 
against EPEC infection.
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