Edit distance metrics are widely used for many applications such as string comparison and spelling error corrections. Hamming distance is a metric for two equal length strings and Damerau-Levenshtein distance is a well-known metrics for making spelling corrections through string-to-string comparison. Previous distance metrics seems to be appropriate for alphabetic languages like English and European languages. However, the conventional edit distance criterion is not the best method for agglutinative languages like Korean. The reason is that two or more letter units make a Korean character, which is called as a syllable. This mechanism of syllable-based word construction in the Korean language causes an edit distance calculation to be inefficient. As such, we have explored a new edit distance method by using consonant normalization and the normalization factor.
Most smartphone use virtual keypads based on touch-pad. The virtual keypads often make typographical errors because of the physical limitations of device such as small screen and limited input methods. To resolve this problem, many similar word-finding methods have been studied. In the paper, we propose an edit distance method (a well-known string similarity measure) that is modified to consider various types of virtual keypads. The proposed method effectively covers typographical errors in various keypads by converting an input string into a physical key sequence and by reflecting characteristics of virtual keypads to edit scores. In the experiments with various keypads, the proposed method showed better performances than a typical edit distance method.
The edit distance problem is finding the minimum number of edit operations to transform a string into another one. It is one of the important problems in algorithm research and there are some algorithms that compute an optimal edit distance for the one-dimensional languages such as the English alphabet. However, there are a few researches to find the edit distance for the more complicated language such as the Korean or Chinese alphabet. In this paper, we define the measure of the edit distance for the Korean alphabet with the phoneme classification system to improve the previous edit distance algorithm and present an algorithm for the edit distance problem for the Korean alphabet.
Kim, Young Ho;Jeong, Ju-Hui;Kang, Dae Woong;Sim, Jeong Seop
KIPS Transactions on Computer and Communication Systems
/
v.2
no.2
/
pp.67-74
/
2013
Approximate string matching problems have been studied in diverse fields. Recently, fast approximate string matching algorithms are being used to reduce the time and costs for the next generation sequencing. To measure the amounts of errors between two strings, we use a distance function such as the edit distance. Given two strings X(|X| = m) and Y(|Y| = n) over an alphabet ${\Sigma}$, the edit distance between X and Y is the minimum number of edit operations to convert X into Y. The edit distance between X and Y can be computed using the well-known dynamic programming technique in O(mn) time and space. The edit distance also can be computed using the Four-Russians' algorithm whose preprocessing step runs in $O((3{\mid}{\Sigma}{\mid})^{2t}t^2)$ time and $O((3{\mid}{\Sigma}{\mid})^{2t}t)$ space and the computation step runs in O(mn/t) time and O(mn) space where t represents the size of the block. In this paper, we present a parallelized version of the computation step of the Four-Russians' algorithm. Our algorithm computes the edit distance between X and Y in O(m+n) time using m/t threads. Then we implemented both the sequential version and our parallelized version of the Four-Russians' algorithm using CUDA to compare the execution times. When t = 1 and t = 2, our algorithm runs about 10 times and 3 times faster than the sequential algorithm, respectively.
The edit distance problem is finding the minimum number of edit operations to transform a string into another one. It is one of the important problems in algorithm research and there are some algorithms that compute an optimal edit distance for the one-dimensional languages such as the English alphabet. However, there are a few researches to find the edit distance for the more complicated language such as the Korean or Chinese alphabet. In this paper, we define the measure of the edit distance for the Korean alphabet and present an algorithm for the edit distance problem for the Korean alphabet.
KIPS Transactions on Computer and Communication Systems
/
v.4
no.7
/
pp.213-218
/
2015
Given two strings X and Y (|X|=m, |Y|=n) over an alphabet ${\Sigma}$, the extended edit distance between X and Y can be computed using dynamic programming in O(mn) time and space. Recently, a parallel algorithm that takes O(m+n) time and O(mn) space using m threads to compute the extended edit distance between X and Y was presented. In this paper, we present an improved parallel algorithm using the shared memory on GPU. The experimental results show that our parallel algorithm runs about 19~25 times faster than the previous parallel algorithm.
Jeong, Ju Hui;Kim, Young Ho;Na, Joong Chae;Sim, Jeong Seop
KIPS Transactions on Software and Data Engineering
/
v.2
no.2
/
pp.119-122
/
2013
Repetitive strings such as periods have been studied vigorously in so diverse fields as data compression, computer-assisted music analysis, bioinformatics, and etc. In bioinformatics, periods are highly related to repetitive patterns in DNA sequences so called tandem repeats. In some cases, quite similar but not the same patterns are repeated and thus we need approximate string matching algorithms to study tandem repeats in DNA sequences. In this paper, we propose a new definition of approximate periods of strings based on distance sum. Given two strings $p({\mid}p{\mid}=m)$ and $x({\mid}x{\mid}=n)$, we propose an algorithm that computes the minimum approximate period distance based on distance sum. Our algorithm runs in $O(mn^2)$ time for the weighted edit distance, and runs in O(mn) time for the edit distance, and runs in O(n) time for the Hamming distance.
Existing techniques for string similarity search first generate a set of candidate strings and then verify the candidates. The efficiency of string similarity search is highly dependent on candidate generation methods. State of the art techniques select fixed length q-grams from a query string and generate candidates using inverted lists of the selected q-grams. In this paper, we propose a technique to generate candidates using variable length grams of a query string and develop a dynamic programming algorithm that selects an optimal combination of variable length grams from a query string. Experimental results show that the proposed technique improves the performance of string similarity search compared with the existing techniques.
Repetitive strings have been studied in such diverse fields as molecular biology data compression etc. Some important regularities that have been studied are perods, covers seeds and squares. A natural extension of the repetition problems is to allow errors. Among the four notions above aproximate squares and approximate periodes have been studied. In this paper, we introduce the notion of approximate covers which is an approximate version of covers. Given two strings P(|P|=m) and T(|T|=n) we propose and algorithm with finds the minimum distance t such that P is a t-approximate cover of T. The algorithm take O(m,n) time for the edit distance and $O(mn^2)$ time of finding a string which is an approximate cover of T is minimum distance is NP-complete.
In this paper, we propose a modified unsupervised linear alignment algorithm for building an aligned corpus. The original algorithm inserts null characters into both of two aligned strings (source string and target string), because the two strings are different from each other in length. This can cause some difficulties like the search space explosion for applications using the aligned corpus with null characters and no possibility of applying to several machine learning algorithms. To alleviate these difficulties, we modify the algorithm not to contain null characters in the aligned source strings. We have shown the usability of our approach by applying it to different areas such as Korean-English back-trans literation, English grapheme-phoneme conversion, and Korean morphological analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.