• 제목/요약/키워드: stress-strength reliability

검색결과 320건 처리시간 0.027초

자동차 전장용 무연솔더 및 솔더 접합부의 신뢰성 평가 (Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint)

  • 방정환;유동열;고용호;윤정원;이창우
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.26-34
    • /
    • 2016
  • Automotive today has been transforming to an electronic product by adopting a lot of convenience and safety features, suggesting that joining materials and their mechanical reliabilities are getting more important. In this study, a Sn-Cu-Cr-Ca solder composition having a high melting temperature ($>230^{\circ}C$) was fabricated and its joint properties and reliability was investigated with an aim to evaluate the suitability as a joining material for electronics of engine room. Furthermore, mechanical properties change under complex environment were compared with several existing solder compositions. As a result of contact angle measurement, favorable spreadability of 84% was shown and the average shear strength manufactured with corresponding composition solder paste was $1.9kg/mm^2$. Also, thermo-mechanical reliability by thermal shock and vibration test was compared with that of the representative high temperature solder materials such as Sn-3.5Ag, Sn-0.7Cu, and Sn-5.0Sb. In order to fabricate the test module, solder balls were made in joints with ENIG-finished BGA and then the BGA chip was reflowed on the OPS-finished PCB pattern. During the environmental tests, resistance change was continuously monitored and the joint strength was examined after tests. Sn-3.5Ag alloy exhibited the biggest degradation rate in resistance and shear stress and Sn-0.7Cu resulted in a relatively stable reliability against thermo-mechanical stress coming from thermal shock and vibration.

자동차용 사판식 압축기의 흡, 토출밸브 설계 (The Design of Suction and Discharge Valve of Automotive Swash Plate Type Compressor)

  • 이건호;권윤기
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.13-18
    • /
    • 2006
  • This paper was studied to design Process considered flexibility and reliability of suction and discharge valves. Flexibility and reliability of valves are main important factors in compressor valves design. And they are incompatible with efficiency of compressor. In this study, we have performed the optimal design of CO2 compressor valves to consider these factors. At first, we analyzed performance simulation of compressor to obtain optimal flexibility level of valves. From this simulation, we could get some important data at valve design like the optimal natural frequency and the height of retainer. After that we studied to reliability of valves corresponding to optimal flexibility level by finite element method. For each case bending stress and natural frequency were obtained by it. Also we investigated the fatigue stability to obtain optimal valve shape that ensured to reliability.

Repairable k-out-n system work model analysis from time response

  • Fang, Yongfeng;Tao, Webliang;Tee, Kong Fah
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.775-783
    • /
    • 2013
  • A novel reliability-based work model of k/n (G) system has been developed. Unit failure probability is given based on the load and strength distributions and according to the stress-strength interference theory. Then a dynamic reliability prediction model of repairable k/n (G) system is established using probabilistic differential equations. The resulting differential equations are solved and the value of k can be determined precisely. The number of work unit k in repairable k/n (G) system is obtained precisely. The reliability of whole life cycle of repairable k/n (G) system can be predicted and guaranteed in the design period. Finally, it is illustrated that the proposed model is feasible and gives reasonable prediction.

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

고장력볼트 냉간압조용 비조질강 특성에 관한 연구 (Mechanical properties and workability of micro-alloyed steel on cold forming of high tension bolt)

  • 이영선;최정묵;황범규;정택우;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.132-136
    • /
    • 2009
  • The importance and interests for saving of energy and cost in industry has been steadily grown up. Therefore, process optimization to reduce the processing step and energy is one of the most important things. The micro-alloyed steel of which post-heat-treatment is not necessary, has attractive points for high strength materials. However, for the application of non-heat-treated steel to structural parts, it is necessary to confirm the reliability of mechanical properties. In order to estimate mechanical properties. The microstructure, hardness, tensile strength, compressive strength and tensile fatigue strength of micro-alloyed steel having 900MPa tensile strength has been investigated.

  • PDF

Noninformative Priors for Stress-Strength System in the Burr-Type X Model

  • Kim, Dal-Ho;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Statistical Society
    • /
    • 제29권1호
    • /
    • pp.17-27
    • /
    • 2000
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X model. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior as well as the Jeffreys prior are the second order matching prior. The propriety of posterior under the noninformative priors is proved. The frequentist coverage probabilities are investigated for samll samples via simulation study.

  • PDF

Reliability Evaluations for Shear Strength of Resistance Welded Ball Stud according to Different Cooling Methods

  • Park, In-Duck;Nam, Ki-Woo
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.44-50
    • /
    • 2018
  • As a type of bolt with a spherical head, the ball stud is widely used as a part of a ball joint in steering or suspension systems in automobiles. Balls and studs are subjected to heat treatment suitable for each material; in particular, the shear strength of the ball stud must meet the specifications of the production company. This study evaluated the shear strength of joints according to the cooling method of ball studs subject to resistance welding. The shear stress of water cooling was higher than that of air cooling (as-received material). Note, however, th at oil cooling showed lower stress than that of as-received. When judged by standard deviation, mean, and coefficient of variation according to the arithmetic statistics and shape parameter as well as scale parameter, oil cooling is suitable.

ReliabIlity analysis of containment building subjected to earthquake load using response surface method

  • Lee, Seong Lo
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.1-15
    • /
    • 2006
  • The seismic safety of reinforced concrete containment building can be evaluated by probabilistic analysis considering randomness of earthquake, which is more rational than deterministic analysis. In the safety assessment of earthquake-resistant structures by the deterministic theory, it is not easy to consider the effects of random variables but the reliability theory and random vibration theory are useful to assess the seismic safety with considering random effects. The reliability assessment of reinforced concrete containment building subjected to earthquake load includes the structural analysis considering random variables such as load, resistance and analysis method, the definition of limit states and the reliability analysis. The reliability analysis procedure requires much time and labor and also needs to get the high confidence in results. In this study, random vibration analysis of containment building is performed with random variables as earthquake load, concrete compressive strength, modal damping ratio. The seismic responses of critical elements of structure are approximated at the most probable failure point by the response surface method. The response surface method helps to figure out the quantitative characteristics of structural response variability. And the limit state is defined as the failure surface of concrete under multi-axial stress, finally the limit state probability of failure can be obtained simply by first-order second moment method. The reliability analysis for the multiaxial strength limit state and the uniaxial strength limit state is performed and the results are compared with each other. This study concludes that the multiaxial failure criterion is a likely limit state to predict concrete failure strength under combined state of stresses and the reliability analysis results are compatible with the fact that the maximum compressive strength of concrete under biaxial compression state increases.

COLD CRACK SUSCEPTIBILITY OF HIGH STRENGTH WELD METAL

  • Kim, H. J.;B. Y. Kang
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.266-272
    • /
    • 2002
  • This study reviews the factors controlling the weld metal cracking and shows the difference from those of HAZ cracking. It further reviews the recent progresses made in consumable design for improving the crack resistance in the high strength weld metal. Previously the controlling factors for weld metal cracking were regarded as weld metal strength, diffusible hydrogen and weld metal height. However an overall review presented in this article shows that the cold crack resistance can be improve significantly through the microstructural control and that an increase in tensile strength is not necessarily related to a decrease in the resistance to cold cracking.

  • PDF

철도궤조(鐵道軌條) 및 용접연결부(鎔接連結部)에 대한 피로설계강도(疲勞設計强度)의 평가(評價) (The Estimation of Fatigue Design Strength on Base Metal and Welded Parts of Rail)

  • 용환선
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.109-116
    • /
    • 1988
  • 구조(構造)의 강도(强度)와 하중(荷重)은 시간(時間)이 경과함에 따라 변하며 확률과정(確率過程)이 된다. 이들의 상호관련성(相互關聯性)으로부터 신뢰도(信賴度)의 추정(推定)이 가능하다. 따라서 안정성(安定性)을 확보(確保)하기 위한 안전(安全)의 여유를 고려하는 경우 허용응력(許用應力)은 신뢰성(信賴性)에 근거한 안전율(安全率)로부터 구하는 것이 합리적(合理的)이다. 본(本) 연구(硏究)에서는 장기적(長期的)으로 피로하중(疲勞荷重)을 받는 철도(鐵道)레일을 대상(對象)으로 해서 신뢰성(信賴性)의 지표(指標)인 파괴확률(破壞確率)을 구하는 방법(方法)을 적용(適用)해 보았다. 신뢰도(信賴度)의 추정(推定)에 있어서 모수(母數)의 추정(推定)이 어려운 경우 파괴확률(破壞確率)의 수치계산(數値計算)은 의미가 없다. 이와 같은 문제점을 극복하기 위하여 상대적(相對的)인 신뢰성(信賴性)을 구하는 관용설계법(慣用設計法)이 제안(提案)되었다. 본(本) 연구(硏究)에서는 Cornell의 관용설계법(慣用設計法)을 적용(適用)하였다. 불확정요소(不確定要素)로서는 강도(强度)와 하중(荷重)의 변동계수(變動係數)를 사용하였고 이들의 파괴확률(破壞確率)에 대한 영향과 신뢰성(信賴性)에 근접(根接)한 안전율(安全率)을 검토하였다. 본(本) 연구(硏究)의 결과는 다음과 같다. 신뢰성(信賴性)에 있어서 용접재(鎔接材)는 강도변동(强度變動)의 영향을 크게 받고 모재(母材)는 하중변동(荷重變動)의 영향을 크게 받았다. 신뢰도(信賴度)에 근접(根接)한 안전율(安全率)로 구한 허용응력범위(許用應力範圍)는 안전측(安全側)에 있음을 확인(確認)하였다.

  • PDF