Journal of the Korean Statistical Society (2000), 29: 1, pp 17-27

Noninformative Priors for Stress-Strength System
in the Burr-Type X Model

Dal Ho Kim, Sang Gil Kang' and Jang Sik Cho?

ABSTRACT

In this paper, we develop noninformative priors that are used for estimat-
ing the reliability of stress-strength system under the Burr-type X model. A
class of priors is found by matching the coverage probabilities of one-sided
Bayesian credible interval with the corresponding frequentist coverage prob-
abilities. It turns out that the reference prior as well as the Jeffreys prior
are the second order matching prior. The propriety of posterior under the
noninformative priors is proved. The frequentist coverage probabilities are
investigated for small samples via simulation study.

Key Words : Jeffreys Prior; Reference Prior; Matching Priors; Burr-Type X
Stress-Strength Model; Frequentist Coverage Probability.

1. INTRODUCTION

Consider the following stress-strength system, where Y is the strength of a
system subject to stress X. The system fails at any moment the applied stress is
greater than its strength. Then reliability of the system is given by

wy = P(X <Y). (1.1)

This model was first considered by Birnbaum (1956), and has since then found
applications in many areas, especially in structural and aircraft industries. Basu
(1985) and Johnson (1988) contain comprehensive reviews of frequentist inference
for stress-strength models, although Johnson (1988) contains a small Bayesian
component.
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The present paper focuses exclusively on Bayesian inference for w;. The
emphasis is on developing noninformative priors. Although subjective Bayesian
are often critical of such priors, these priors have clear pragmatic appeal especially
when prior information is vague in nature.

The most frequently used noninformative prior is Jeffreys’ (1961) prior, which
is proportional to the positive square root of the determinant of the Fisher in-
formation matrix. In the one-parameter case, Welch and Peers (1963) proved
that a one-sided credible interval from Jeffreys’ prior matches the corresponding
frequentist coverage probability up to o(n_%), where n is the sample size.

In spite of its success in one-parameter problems, Jeffreys’ prior frequently
runs into serious difficulties in the presence of nuisance parameter(s). To over-
come these difficulties, Stein (1985) extended the results in Welch and Peers
(1963) and Peers (1965) and introduced a method to find a prior which requires
the frequentist coverage probability of the posterior region of a real-valued para-
metric function to match the nominal level with a remainder of o(n_%). Tibshi-
rani (1989) reconsidered the case when the real-valued parameter of interest is
orthogonal to the nuisance parameter vector in the sense of Cox and Reid (1987).
These priors, as usually referred to as ‘first order’ matching priors, were further
studied in Datta and Ghosh (1995a). Recently, Mukerjee and Ghosh (1997) de-
veloped a ‘second order’, that is, o(rn~!), matching prior. They extended the
finding in Mukerjee and Dey (1993) to the case of multiple nuisance parameters
based on quantiles, and also developed a second order matching prior based on
distribution function.

On the other hand, Berger and Bernardo (1989, 1992) extended Bernardo’s
(1979) reference prior approach, giving a general algorithm to derive a reference
prior by splitting the parameters into several groups according to their order
of inferential importance. This approach is very successful in various practical
problems. Quite often reference priors satisfy the matching criterion described
earlier.

Thompson and Basu (1993) derived reference priors when the stress and
strength are both exponentially distributed. It turns out that in such cases,
the reference priors agree with Jeffreys’ prior. Lee (1998) investigated matching
priors in exponential stress-strength model. Lee, Sun and Basu (1997) derived
matching priors and Ghosh and Yang (1996) derived matching priors as well
as reference priors when the stress and strength are both normally distributed.
Sun, Ghosh and Basu (1998) derived Jeffreys’ prior, reference priors and match-
ing priors when the stress and strength have both Weibull distributions. It turns
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out that none of the Jeffreys’ prior and the reference priors is a matching prior.
Their study shows that the matching prior performs better than Jeffreys™ prior
and reference priors in meeting the target coverage probabilities.

Ahmad, Fakhry and Jaheen (1997) studied the empirical Bayes estimation of
wy = P(X <Y) when X and Y are independent Burr-type X random variables.
Qur interest is to derive noninformative priors for Burr-type X stress-strength
models when w; is the parameter of interest. It turns out that reference priors,
second order matching prior and Jeffreys’ prior are the same.

The outline of the remaining sections is as follows. In Section 2, we de-
rive Fisher information matrices under original parameterization and orthogonal
reparametrization. Then we derive Jeffreys prior, the second order matching prior
and the reference prior. In Section 3, the propriety of posterior under the de-
rived noninformative prior is proved. Also the marginal density of w; under this
prior is given. In Section 4, simulated frequentist coverage probabilities under
the derived noninformative prior are provided for small samples.

2. NONINFORMATIVE PRIORS

We denote the Burr-type X distribution with probability density function(pdf)
floim = 2nee™ (1= e )" a > 0,9 > 0, (2.1)

as Burr-type X (n). Sartawi and Abu-Salih (1991) obtained the Bayesian pre-
diction bounds for the order statistics in the one sample and two sample cases
under the Burr-type X model. Jaheen (1996) considered the Burr-type X (#) dis-
tribution as a lifetime model and obtained Bayes and empirical Baves estimates
of reliability and failure rate functions of the model in one sample case.

Now let X be a random variable with Burr-type X (7;) and Y is another
Burr-type X (72) random variable where X and Y are independent. One can see
easily that

2
w=PX<Y)= ———. :
' ( ) n + M2 (

SV]
N
~

It is interesting to note that
(i) If W is exponential random variable with failure rate 7, and Z is exponential
random variable with failure rate 7y where W and Z are independent, then

P(Z<W)=—2 = P(X<Y)=uw.
m+ m
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(ii) Let U be Pareto with parameters 7; and & whose pdf is

5771
f(u):nlm, U>€, £>07

and V be Pareto with parameters 1; and £&. When U and V are independent we
have

v, U n

PV <U)y=P(=)<In(=)]=PZ<W)=—"—=P(X <Y) = w,

§ 3 m+n2
where W = ln(%) has exponential distribution with failure rate 7;. Therefore,
the results obtained in this paper can be generalized to the exponential and
Pareto distributions. However, unlike the exponential distribution, when n = 1
the failure rate function of Burr-type X (7) model is linear and an increasing
function of time. The linear failure rate function has many applications. Another
lifetime model that has a linear failure rate is the Rayleigh distribution, which is
a special case of the Weibull family. This type of situation would exist if failure
occurs randomly and from wear out or deterioration.

Suppose that Xy,---, X, are independent random samples from Burr-type

X (m), and independently, Y7,---,Y, are independent random samples from
Burr-type X (72). The log-likelihood function of (7, 17) is

L(m, n2) < mlog(m) + nlog(nz) — m Zlog(l - 6_1?) — Zlog(l - e_sz').
J=1

=1

By a simple algebra, the Fisher information matrix of (1, n;) is given by

m o
Imym)={ o &
3

so that |I(n,72)|'/? o (m1n2)~". Then Jeffreys’ prior is
1
Mg

Now let X = (X3, -+, X)) and Y = (Y7,---,Y,). Under the Burr-type X
stress-strength model, the parameter of interest is wy = n2/(m1 + n2). Then our

(M, n2) (2.3)

interest is to find the probability matching prior for w;.
For a prior 7, let w;~*(m; X,Y) denote the 100(1-a)th percentile of the pos-
terior distribution of w;j, that is,

P"w; < wj™*(m X, )X, Y]=1- . (2.4)
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We want to find priors 7 for which
Plwy < w;™ (13X, Y)|m, 1) = 1 - a+o(n™¥) (2.5)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.5) are called matching
priors. If u = 1/2, then = is referred to as a first order matching prior, while if
u = 1, 7 is referred to as a second order matching prior.
In order to find such matching priors m, it is convenient to introduce orthog-
onal parametrization (Cox and Reid, 1987; Tibshirani, 1989). To this end, let
2

Wy = , wo = n"nY. 2.6
1 o+ M7 (2.6)

With this parametrization, the likelihood has the alternate representation.

m 9 w]/(m+nj( w )“”/l’”'f”)
L{wy, wy) o< 1wy H[l —exp(—ai)]? T=wy (2.
=1

[SV]
~1

1/(m+71)( wy )m/(m+n)

x ]l - exp(—y})]" e
P

Based on (2.7), the Fisher information matrix is given by

mn 5 1 5 0
I(wl,’wg) - ( m+n wlo(l—wl) X ) )
2

(m+n)ws;

Thus w; is orthogonal to ws in the sense of Cox and Reid (1987). Following
Tibshirani (1989), the class of first order matching prior is characterized by

( 1

w\5 (wy, ws) o d(wy), (2.8)

wi(l — wy)
where d(-) is an arbitrary function differentiable in its arguments.

Clearly the class of prior given in (2.8} is quite large and it is important to
narrow down this class of priors. To this end, we consider the class of second
order probability matching priors as given in Mukerjee and Ghosh (1997) (see also
Mukerjee and Dey, 1993). A second order matching prior is also of the form (2.8),
but the function d must satisfy an additional differential equation (cf. (2.10) of
Mukerjee and Ghosh (1997)), namely

1 g , -3 a -1
gd(wQ)a—wl(quLl,l,l) + a—wz{-’nanﬂnd(wz)} =0, (2.9)
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where
Odlog L 4 ¢
Lii = E[(W) = m, ¢ = a constant
&log L nm 1
Lijg=F - _
112 [0211)1(?11)2] (m + n)2 wf(l _ 'wl)zwz’
and

-1
JALEY A2 . I 1o . (771—}-71)11)% 0
o) o\ Iy Iy - 0 PR wi(l—wy)? |

Then (2.9) simplifies to

0 mn 1
- w W = 0. 9
Fus \/;:wl(l oy ed(wa)} =0 (2.10)

Hence the set of solution of (2.10) is of the form

1

Thus the unique second order matching prior is given by

1

7r(2)(w1,wg) X —Y.
M 'wl(l bt w1)102

Back to (71, 72) formulation the above second order matching prior transforms
to

(2)(

1
Tar (M1, m2) X —— (2.11)

M2
which is Jeffreys’ prior. The invariance of the first order matching priors is proved
in Datta and Ghosh (1996), and that of first and second order matching priors is
proved in Mukerjee and Ghosh (1997).
Other possible noninformative prior is the reference prior of Bernardo (1979).
Choosing rectangular compacts for each one of w; and wy, when w, is the param-
eter of interest, due to the orthogonality of w; with ws, from Datta and Ghosh

(1995b), the reference prior as well as the reverse reference prior is given by,
(w1, w2) :

mr(wy, we) X ——.

R\Wy, W2 u71(1—'w1)u’2
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This prior is clearly a second order probability matching prior.

Thus it turns out that the Jeffreys’ prior, the reference priors and the second
order matching prior for (71, 72) are the same in the Burr-type X case. Therefore
we denote by

701y 1) = 7 (m,m2) = 7R, 12) = 72 (11, 7). (2.12)

Note that the same phenomenon was observed in Ghosh and Sun (1998) for the
expornential case.

3. IMPLEMENTATION OF THE BAYESIAN PROCEDURE

We now prove that the posterior is proper under the noninformative prior
given in (2.12).

Theorem 1. The posterior distribution of (7, 7;) under the prior 7, (2.12),
is proper.

Proof. Note that

/ / (M1, 712) dny
I N
X | i [ = exp(=z2))™ [” (1 — exp(—y$)) ™ dmds
/ / 2 :1 ]1;11 nan;
= 2m+nll—I (1-exp Jl:[l 1—exp ))exp LZ;I —ZJ]
y I'(m) T'(n)
(307 log[1 — exp(—2)])™ (37—, log[1 — exp(—y)])"
< o0.

This completes the proof.

Next, we provide the marginal density of w;, under the above noninformative

prior.
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Theorem 2. Under the prior 7, (2.12), the marginal posterior density of
wy = 12/(m + n2), is given by

(w1 X, Y) o w1 - 'wl)m‘l(h(i,l))m*", (3.1)
where
m " (1= —y?
bir) = ogl] [ (1~ exp(-21)] + wn logl oo )
i=1 . 1=1 i

The normalizing constant for the marginal density of w; requires a one di-
mensional integration. Therefore we have the marginal posterior density of wy,
and so it is easy to compute the marginal moment of w;.

4. SMALL SAMPLE SIMULATION STUDY

We evaluate the frequentist coverage probability by investigating the credible
interval of the marginal posterior density of w; under the noninformative prior 7
given in (2.12) when m and n are small. That is to say, the frequentist coverage of
a (1 — «a)th posterior quantile should be close to 1 — «. This is done numerically.
Table 1 gives numerical values of the frequentist coverage probabilites of 0 to
0.05 (0 to 0.95) posterior quantiles for the our prior. The computation of these
numerical values is based on the following algorithm for any fixed true (7, 72) and
any prespecified probability value a. Here ais 0.05 {0.95). Let w] («|X,Y) be the
posterior a-quantile of w; given (X,Y). Thatis tosay, F(w](«|X,Y)|X,Y) = «,
where F(:|X,Y) is the marginal posterior distribution of w;. Then the frequentist
coverage probability of this one sided credible interval of w; is

P(Tll yrlz)(a; wl) = P(mm)(O <w; < w{'(a|X, Y)) (41)

The estimated P, ,,)(a;w1) when o = 0.05(0.95) is shown in Table 1.

In particular, for fixed (1, 72, m, n), we take 10,000 independent random samples
of m stresses X = (X4, -+, Xy,) from Burr-type X () and n strengths Y =
(Y1,--+,Y,) from Burr-type X (72). Note that under the prior 7, for fixed X and
Y, w < wl(¢|X,Y) if and only if F(w](a|X,Y)|X,Y) < a. Under the prior
T, Py, oy (@3 w1) can be estimated by the relative frequency of F(vT|X,Y) < a.
For the cases presented in Table 1, we see that the noninformative prior 7 meet
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Table 1: Frequentist Coverage Probability of 0.05 (0.95) Posterior Quantiles of
wy

T
0.05 [ 0.95
0.0508 | 0.9472
0.0501 | 0.9486
0.0483 | 0.9465
10 || 0.0474 | 0.9499
2 | 2 || 0.0468 | 0.9529
2 | 3 || 0.0519 | 0.9527
0.0491 | 0.9517
10 | 10 || 0.0524 | 0.9493
2 | 2 [ 0.0486 | 0.9509
2 | 3 || 0.0454 | 0.9525
5 | 5 | 0.0402 | 0.9478
10 | 10 || 0.0516 | 0.9526

=3
=
3
&

vl =

Sleo|o 3

ool w| || ] -] =
OO O NN N ==
[ ]

[,

very well the target coverage probabilities. Also note that the results in Table 1
are not much sensitive to the change of the values of (91, n2).
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