• 제목/요약/키워드: stress transfer

검색결과 1,112건 처리시간 0.023초

탄산칼슘 함량에 따른 잉크의 구조 회복성 변화에 관한 연구 (The Study of Structure Recovery According to the Concentration of the Calcium Carbonate for Ink)

  • 이규일;김성빈;조진우
    • 한국인쇄학회지
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2003
  • Printing ink is faced various shear stress situation until it transfer to the printed substrate through the press. And in each shear stress condition the ink is needed to keep the appropriate viscosity according to the condition. The change of printing ink viscosity has been explained by well-known through the viscosity profile curve. But actually, the quality of printed paper depends on the ink behavior after transfer the substrates. Like this, to look into the behaviour of the ink on the printed substrate, it is needed the experiment of the ink structure recovering by rheology study. In this study, by controling the $CaCO_3$ content in the ink, after investigating the effect of the ink's structure recovery of the pigment concentration, we intend to predict the printing quality of the ink behvior on the substrate depending on pigment content.

  • PDF

Computer Simulations on the Thermal Behaviors of a Friction Pad in High-Speed Train Disk Brakes

  • Kim, Chung Kyun
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.95-100
    • /
    • 2000
  • The thermal behaviors of disk-pad braking models has been analyzed for a high-speed train brake system using the coupled thermal-mechanical analysis technique. The temperature distribution, thermal distortion, and contact stress in the disk-pads contact model have been investigated as functions of the convective heat transfer rate. The FEM results indicate that multiple spot type pads show more stabilized thermal characteristics compared with those of the flat type pads for the increased convective heat transfer rate. The maximum contact stress for a friction pad loaded against a rubbing disk was occurred on the edge of the pad at the disk-pad interface.

  • PDF

강선 이음길이에 따른 PC 보-기둥 접합부의 휨 거동에 관한 실험적 연구 (Experimental Study on Flexural Behavior of PC Beam Column Joint with Spliced Strand)

  • 하상수;김승훈;문정호;이리형;이강철;김익배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.207-210
    • /
    • 2003
  • As reviewing of current trend on PC connection details, owing to effective stress transfer in the connection, it grow to increase that use of mechanical splices, reinforcements or welded splices, and prestressing. However such devices as reinforcement, mechanical splices entail not only more cost resulted from materials but also extra construction process so as to cause PC used method to lower competition against conventional method. Therefore more enhanced connection details which help working process simplified and construction cost reduced. In this research, as replace 9.3mm 7strand for reinforcement, it is attempt to devise connection detail which makes workability improve and confirm effective stress transfer in the region of connection. The experimental research is proceeded by partial tension test of specimen. The splice lengths of 7strand is decided to be variations. The flexural capability is verified to depend on spice length. An an appropriate splice length could be also determined as a precedent research on improving PC connection detail.

  • PDF

난류유동 및 대류열전달에 대한 비선형 난류모형의 개발 (Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer)

  • 박태선;성형진
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

알루미늄 용탕 보온로의 열해석 및 하부 구조물의 강도해석 (Analysis of Temperature of Molten Aluminium Holding Furnace and Stress of Substructure Frame)

  • 박상수;강충길;김병민
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.129-136
    • /
    • 2005
  • The demand on thermos furnace of Al molten metal has recently been getting higher and higher according to the increase in use of Al and Al alloys. This study considers the estimation of the thermal and mechanical stability in the thermos furnace for Al casting. It is executed through the analysis of heat transfer on the refractory material and heat stress on each steel shell. Also, the estimation of structural stability was appraised through the strength analysis of the lower structure. In result, the temperature of steel shell rose to 320.15K and its elastic deformation was about 1.5mm. The elastic deformation of the lower structure was about 0.66mm. As a result of it, the data obtain from the analysis in this study are regarded as stable value on considering that the size of the furnace is 2500mm.

열간압연 가열로 슬라브 이송장치 신뢰도 해석 (Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace)

  • 배용환
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

수평평판의 층류 막응축에서 압력의 영향 (The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate)

  • 이억수;이승홍
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

Experimental Study on Interfacial Behavior of CFRP-bonded Concrete

  • Chu, In-Yeop;Woo, Sang-Kyun;Lee, Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.127-134
    • /
    • 2015
  • Recently, the external bonding of carbon fiber reinforced polymer (CFRP) sheets has come to be regarded as a very effective method for strengthening of reinforced concrete structures. The behavior of CFRP-strengthened RC structure is mainly governed by the interfacial behavior, which represents the stress transfer and relative slip between concrete and the CFRP sheet. In this study, the effects of bonded length, width and concrete strength on the interfacial behavior are verified and a bond-slip model is proposed. The proposed bond-slip model has nonlinear ascending regions and exponential descending regions, facilitated by modifying the conventional bilinear bond-slip model. Finite element analysis results of interface element implemented with bond-slip model have shown good agreement with the experimental results performed in this study. It is found that the failure load and strain distribution predicted by finite element analysis with the proposed bond-slip are in good agreement with results of experiments.

열화가 억제된 다결정 실리콘 박막 트랜지스터의 전기적 특성 (Electrical Characteristics of Poly-Si TFT`s with Improved Degradation)

  • 변문기;이제혁;백희원;김동진;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.457-460
    • /
    • 1999
  • The effects of electrical positive stress on n-channel LDD and offset structured poly-Si TFT\`s have been systematically investigated in order to analyze the transfer curve\`s shift mechanism. It has been found that the LDD and offset regions behave as a series resistance that reduce the electric field near drain. Hot carrier effects are reduced because of these results. After electrical stress transfer curve’s shift and variation of the off-current are dependent upon the offset length rather than offset region’s doping concentration. Variation of the subthreshold slope is dependent upon offset region’s doping concentration as well as offset length.

  • PDF

3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석 (In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element)

  • 김진곤
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF