• 제목/요약/키워드: stress transfer

검색결과 1,104건 처리시간 0.026초

유한요소법을 이용한 용접부의 열전달 및 잔류응력 해석에 관한 연구 (A Study on Analysis of Heat Transfer and Residual Stress on the Weld Zone using FEM)

  • 김일수
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.96-104
    • /
    • 2000
  • This paper represents to develop a computer software system which is capable to analyze the phase transformation of high strength steel(BV-AH32) and to predict heat transfer and welding residual stress due to phase transformation during Gas Metal Arc(GMA) welding. The developed model was considered temperature dependent properties such as young's modules, coefficient of thermal expansion and yield stress as well as the double ellipsoidal heat distribution by the moving arc. From the results, it was found that the longitudinal and transverse residual stresses calculated by the coupled analysis of heat transfer, residual stress and phase transformation showed good agreement with the experimental data. In addition, the temperature distribution as well as longitudinal and transverse residual stresses of weldment by the 1-pass and 2-pass of welding were also determined.

  • PDF

중환자실 환자의 일반 병동 전실 시 스트레스 영향요인 (Factors Influencing Relocation Stress Syndrome in Patients Following Transfer from Intensive Care Units)

  • 박진희;유문숙;손연정;배선형
    • 대한간호학회지
    • /
    • 제40권3호
    • /
    • pp.307-316
    • /
    • 2010
  • Purpose: The purpose of this study was to identify the levels of relocation stress syndrome (RSS) and influencing the stress experienced by Intensive Care Unit (ICU) patients just after transfer to general wards. Methods: A cross-sectional study was conducted with 257 patients who transferred from the intensive care unit. Data were collected through self-report questionnaires from May to October, 2009. Data were analyzed using the Pearson correlation coefficient, t-test, one-way ANOVA, and stepwise multiple linear regression with SPSS/WIN 12.0. Results: The mean score for RSS was $17.80{\pm}9.16$. The factors predicting relocation stress syndrome were symptom experience, differences in scope and quality of care provided by ICU and ward nursing staffs, satisfaction with transfer process, length of stay in ICU and economic status, and these factors explained 40% of relocation stress syndrome (F=31.61, p<.001). Conclusion: By understanding the stress experienced by ICU patients, nurses are better able to provide psychological support and thus more holistic care to critically ill patients. Further research is needed to consider the impact of relocation stress syndrome on patients' health outcomes in the recovery trajectory.

전자장비 회로기판의 열응력해석 (Thermal Stress Analysis for the Printed Circuit Board of Electronic Packages)

  • 권영주;김진안
    • 한국CDE학회논문집
    • /
    • 제9권4호
    • /
    • pp.416-424
    • /
    • 2004
  • In this paper, the heat transfer analysis and thermal stress analysis of the PCB(Printed Circuit Board) equipped in electronic Packages are carried out for various may types of chips on the PCB. And two structural PCB models are used in the analyses. The electronic chips on the PCB usually emit heat and this heat generates the thermal stress around the chip. The thermal load due to the heat generation of chips on the PCB may cause the malfunction of the electronic packages such as a monitor. a computer etc. Hence, the PCB should be designed to withstand these thermal loads. In this paper, the heat transfer analysis and thermal stress analysis are executed for the PCB model with pins and the analysis results are compared with the results for the PCB model without pins. The analysis results show that the PCB model without pins is not good for the thermal stress analysis of PCB, even though these two models have similar heat transfer characteristics. The analysis results also show that the highest thermal stress occurs in the pin especially attached to the highest temperature chip, and the PCB constrained to the electronic package on the long side is structurally more stable than other cases. The analyses of the PCB are executed using the finite element analysis code, NISA.

초고성능 콘크리트 프리텐션부재의 응력전달길이 (A Stress Transfer Length of Pre-tensioned Members Using Ultra High Performance Concrete)

  • 김지상;최동훈
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.336-341
    • /
    • 2018
  • 프리텐션 콘크리트 부재에서 긴장재에 도입된 프리스트레싱힘은 긴장재와 콘크리트의 직접 부착에 의하여 콘크리트에 전달되므로 응력전달길이를 합리적으로 산정하는 것이 중요하다. 프리텐션부재 또는 프리캐스트 부재에 UHPC를 사용하는 경우 품질관리 측면에서 많은 장점이 있다. 따라서, 이 논문은 초고성능 콘크리트를 사용한 프리텐션 부재에 있어서 PS 강연선의 응력전달길이를 구하기 위하여 초고성능 콘크리트의 압축강도, 피복두께, 긴장재의 지름 및 긴장력을 변수로 하여 실험을 진행하고 그 결과를 분석한 내용을 정리한 것이다. 실험 결과에 따르면 초고성능 콘크리트를 사용한 경우 일반 콘크리트에 비하여 응력 전달길이가 크게 감소하였으며, 압축강도 수준이 증가할수록 응력전달길이가 감소하는 것을 확인할 수 있었다. 이는 초고성능 콘크리트의 높은 부착강도에서 비롯되는 것으로 판단된다. 또한, 실험결과와 기존 설계기준의 응력전달길이 산정식을 비교하고, 초고성능 콘크리트 프리텐션 부재의 응력전달길이를 산정할 수 있는 새로운 공식을 제안하였다.

동력분배용 중간변속기 개발에 관한 연구 (Development of the Transfer Case for Power Distribution)

  • 심기중;문홍주;이영춘
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.95-102
    • /
    • 2018
  • This paper presents the development of the transfer case for a 3.5-ton commercial vehicle. A transfer case is composed of many parts, including helical gear, shaft, bearing, planetary gear, and others. Helical gears are currently used as power transmitting gears due to their relatively smooth and silent operation, large load carrying capacity, and operation at higher speeds. The key parameter in transfer case development is the bending stress at the root of a tooth in the helical gear. The bending stress of the helical gear has been studied through theoretical calculation and finite element method (FEM) analysis. Major factors of the bending stress calculation are determined according to American Gear Manufacturers Association (AGMA) standards, and FEM model analysis of the helical gear is conducted. FEM results are compared with theoretical calculations and the difference of the bending stress is described.

전달강성계수법에 의한 왕복 기계 축계의 비틀림진동 응력해석 (Torsional Vibration Stress Analysis for Shafting in Reciprocating Machine by Transfer Stiffness Coefficient Method)

  • 최명수
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.749-756
    • /
    • 2004
  • While designing shafting in reciprocating machines with internal combustion engines which derive generators, pumps, and vehicles, it is very important to calculate the additional stress of shafting by torsional vibration. In this paper, the transfer stiffness coefficient method which is based on the successive transfer of stiffness coefficient was applied to the calculation of the additional stress of shafting in reciprocating machine by torsional vibration. In order to confirm the effectiveness of the present method, a propulsion shafting with a diesel engine in a vessel was considered as the computational example of shafting in reciprocating machine. The results calculated by the present method were compared with those of the modal analysis method, the mechanical impedance method, and free vibration analysis.

엔진 부품에 대한 피로 및 전동해석 (Fatigue and Vibration Analysis on Engine Parts)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.321-325
    • /
    • 2010
  • This study analyzes the results with the simulation of heat transfer, structural stress, fatigue and vibration on main parts of engine. The maximum temperature is shown by $300.73^{\circ}C$ on the upper part of piston with the heat transfer. Maximum total deformation or equivalent stress is shown by 65.31mm or 21364MPa respectively at the upper plane of piston with the structural analysis inclusive of heat transfer. The minimum life is shown by the cycle less than $10^7$ at the part of crankshaft with the fatigue analysis. The frequency with the maximum amplitude of deformation is shown by 14Hz. Maximum total deformation or equivalent stress is shown respectively by 93.99mm on the upper plane of piston or 42625MPa at the part connected with crack shaft and connecting rod at 14Hz. The durability of engine design can be verified by using the analysed result of this study.

굴착으로 인한 응력전이효과를 고려한 터널의 지반이완하중 평가 (Evaluation of rock load based on stress transfer effect due to tunnel excavation)

  • 이재국;김정주;;유한규
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.999-1012
    • /
    • 2017
  • 터널 굴착에 따라 발생하는 지반이완하중은 이론식, 경험식 및 수치해석적 방법에 의해 산정할 수 있다. 이론식 및 경험식에 의한 방법은 지반조건, 터널형상, 그리고 시공조건을 고려할 수 없다. 그러나 수치해석적인 방법은 터널 굴착으로 인해 발생하는 굴착면 주변의 변위와 응력 분석이 가능하며, 지반조건 및 시공조건을 고려한 지반이완하중 산정이 가능하다. 터널 굴착면 주변에 발생하는 응력전이효과를 파악할 수 있는 최대주응력과 최소주응력과의 차이와 최대주응력에 대한 비로서 응력전이비(e)를 제시하였다. 이 결과를 이용하여 터널 굴착에 따른 굴착면 주변에서의 이격된 거리에 따라 발생하는 주응력 차이에 의한 지반이완 영역을 확인할 수 있었다. 또한, 지반등급별 변화와 응력전이비(e) 변화에 따른 수치해석을 실시하여 지반이완하중 값의 차이를 확인할 수 있었다. 본 연구의 방법과 기존의 지반이완하중 산정 결과와 비교한 결과, 응력전이효과(e = 10%)를 고려한 결과값이 한계변형률을 이용한 방법보다는 지반이완하중이 다소 크게 나타났으나 대체로 이론식 및 경험식 보다는 작게 나타났다. 따라서 응력전이효과를 고려한 지반이완하중 산정은 실제 지반조건과 터널 시공조건을 고려한 것으로 콘크리트라이닝 설계에 적용 가능한 방법이 될 것으로 판단된다.

원형관내 나노유체의 강제대류에 관한 수치적 연구 (NUMERICAL STUDY OF NANOFLUIDS FORCED CONVECTION IN CIRCULAR TUBES)

  • 최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, hydraulic & thermal developing and fully developed laminar forced convection flow of a water-$Al_2O_3$ nanofluid in a circular horizontal tube with uniform heat flux at the wall, are investigated numerically. A single phase model employed with temperature independent properties. The thermal entrance length is presented in this paper. The variations of the convective heat transfer coefficient and shear stress are shown in the entrance region and fully developed region along different nanoparticles concentration and Reynolds numbers. Convective heat transfer coefficient for nanofluids is larger than that of the base fluid. It is shown that heat transfer is enhanced and shear stress is increased as the particle volume concentration increases. The heat transfer improves, as Reynolds number increases.

에틸렌 반응로에 대한 복합 열전달 해석 (Conjugate Heat Transfer Analysis of an Ethylene Furnace)

  • 안준;박진우
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.515-519
    • /
    • 2015
  • Conjugate heat transfer analysis for an ethylene furnace was carried out based on numerical simulation. Detailed distributions of velocity vectors, chemical species, and temperature inside the furnace are presented and discussed. Von Mises stress and heat flux at the tube surface were also evaluated to elucidate mechanisms regarding failure of the tube. Maximum stress was found at the upstream elbow of the tube, which did not coincide with the location of maximum heat flux. This implies that thermal stress at a steady state would not be a dominant component of the stress. Degradation of the material, as well as the system arrangement, should be considered in order to accurately predict the lifetime of the tube material in the furnace.