• Title/Summary/Keyword: stress shock proteins

Search Result 160, Processing Time 0.026 seconds

Induction of Stress Proteins in the SCK Tumor Cells (SCK종양 세포에서Stress Protein의 합성유도)

  • 강만식;김경희
    • The Korean Journal of Zoology
    • /
    • v.31 no.3
    • /
    • pp.157-164
    • /
    • 1988
  • SCK tumor cells were exposed to heat shock or several sulihydryl-reacting agents such as iodoacetamide(IAA), zinc chloride(Zn), and 2-mercaptoethanol(ME). Stress proteins induced by these agents were examined and the relationship between the induction of stress proteins and the production of abnormal proteins was discussed. Based on the present experiments, two classes of intracellular pathways for the induction of stress proteins were defined; one dependent on and the other independent of protein synthesis. The presence of cycloheximide during the induction period blocked the formation of stress proteins in the cells exposed to Zn or ME, but not in those exposed to heat shock or IAA.Therefore, stress protein seems to be induced either by denaturation of pre-existing mature proteins (e.g., heat shock or IAA) or by newly synthesized abnormal proteins(e.g., Zn or ME). In conclusion, it is ilkely that the production of abnormal proteins by stresses triggers stress protein induction. In addition, it was found that the cells exposed to IISP and GRP inducers simultaneously responded to more strong stress among several stresses encountered.

  • PDF

Effects of Bambusae Caulis in Liquamen on the Stress Proteins Induced by Heating in Endothelial Cells (혈관내피세포에 열 충격 부과시 죽력이 stress proteins의 발현에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.496-499
    • /
    • 2004
  • We have previously observed that Bambusae Caul is in Liquamen (BCL) stimulates the adipose conversion of 3T3-L1 cells and molecular chaperones were involved in the process of the assembly and replacement of laminin subunits in Bovine aortic endothelial cells(BAEC). Endothelial cells are exposed to continuous shear stress due to the blood flow. Heat shock protens(hsp) are a well-known stress response protein, namely, stress proteins. To investigate effects of BCL on the stress proteins induced by heating in endothelial cells, we have analyzed synthetic amounts of stress proteins in sodium dodecyl sulfate gel electrophoresis under reducing conditions. Under the condition of heating stress, BCL inhibited the synthesis of stress proteins in endothelial cells. These results suggest that BCL may have an important role for expression of stress proteins induced by heating in endothelial cells.

Production of Stress Shock Proteins DnaK and GroEL in Burkholderia cepacia YK-2 by Phenoxyherbicide 2,4-Dichlorophenoxyacetic Acid as an Environmental Contaminant (Burkholderia cepacia YK-2에서 페녹시계 제초제 2,4-Dichlorophenoxyacetic Acid에 의한 스트레스 충격 단백질 DnaK와 GroEL의 생성)

  • Cho, Yun-Seok;Park, Sang-Ho;Kim, Chy-Kyung;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Production of stress shock proteins in Burkholderia cepacia YK-2 in response to the phenoxyherbicide 2,4-dichlorophenoxyacetic acid(2,4-D) as an environmental contaminant was investrigated. The stress schock proteins were synthesized at different 2,4-D concentrations in exponentially growing cultures of B. capacia YK-2. This response involved the production of 43kDa and 41kDa GroEL proteins. The proteins were characterized by SDS-PAGE and Western blot using the anti-DnaK nad anti-GroEL monoclonal antibodies. Total stress shock proteins were analyzed by 2-D PAGE. Survival of B. cepacia YK-2 with time in the presence of different concentrations of 2,4-D was monitored, and viable counts paralleled the production of the stress shock proteins in this bacterium.

  • PDF

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Responses of Pseudomonas sp. DJ-12 to Pollutant Stresses of Benzoate and 4-Chlorobenzoate

  • Ko, Yeon-Ja;Park, Sang-Ho;Park, Yong-Keun;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.422-428
    • /
    • 1999
  • Aromatic hydrocarbons can be utilized as carbon and energy sources by some microorganisms at lower concentrations. However, they can also act as stresses to these organisms at higher concentrations. Pseudomonas sp. DJ-12 is capable of degrading 0.5 mM concentration of benzoate and 4-chlorobenzoate (4CBA). In this study, the exposure of Pseudomonas sp. DJ-12 to the pollutant stresses of benzoate and 4CBA at various concentrations was comparatively studied for its cellular responses, including survival tolerance, degradability of the aromatics, and morphological changes. Pseudomonas sp. DJ-12 utilized 0.5 to 1.0mM benzoate and 4CBA as carbon and energy sources for growth. However, the organism could not degrade the aromatics at concentrations of 3 mM or higher, resulting in reduced cell viability due to the destruction of the cell envelopes. Pseudomonas sp. DJ-12 cells produced stress-shock proteins such as DnaK and GroEL when treated with benzoate and 4CBA at concentrations of 0.5mM, or higher as sublethal dosage; Yet, there were differing responses between the cells treated with either benzoate or 4CBA. 4CBA affected the degradability of the cells more critically than benzoate. The DnaK and GroEL stress-shock proteins were produced either by 1mM benzoate with 5 min treatment or by higher concentrations after 10min. The proteins were also induced by 0.5mM 4CBA, however, it needed at least 20min treatment or longer. These results indicate that the chlorination of benzoate increased the recalcitrance of the pollutant aromatics and changed the conditions to lower concentrations and longer treatment times for the production of stress-shock proteins. of stress-shock proteins produced by the aromatics at sublethal concentrations functioned interactively between the aromatics for survival tolerance to lethal concentrations.

  • PDF

Stress-shock Response of a Methylotrophic Bacterium Methylovorus sp. strain SSl DSM 11726

  • Park, Jong H.;Kim, Si W.;Kim, Eungbin;Young T. Ro;Kim, Young M.
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.162-167
    • /
    • 2001
  • Methylovorus sp. strain SS1 DSM 11726 was found to grow continuously when it was transferred from 30$\^{C}$ to 40$\^{C}$ and 43$\^{C}$. A shift in growth temperature from 30$\^{C}$ to 45$\^{C}$, 47$\^{C}$ and 50$\^{C}$ reduced the viability of the cell population by more than 10$^2$, 10$^3$and 10$\^$5/ folds, respectively, after 1h cultivation. Cells transferred to 47$\^{C}$ and 50$\^{C}$ after preincubation for 15 min at 43$\^{C}$, however, exhibited 10-fold increase in viability. It was found that incubation for 15 min at 40$\^{C}$ of Methylovorus sp. strain SSl grown at 30$\^{C}$ was sufficient to accelerate the synthesis of a specific subset of proteins. The major heat shock proteins had apparent molecular masses of 90, 70, 66, 60, and 58 kDA. The 60 and 58 kDa proteins were found to cross-react with the antiserum raised against GroEL protein. The heat shock response persisted for over 1h. The shock proteins were stable for 90 min in the cell. Exposure of the cells to methanol induced proteins identical to the heat shock proteins. Addition of ethanol induced a unique protein with a molecular mass of about 40 kDa in addition to the heat-induced proteins. The proteins induced in paraquat-treated cells were different from the heat shock proteins, except the 70 and 60 kDa proteins.

  • PDF

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377

  • Kim, Il-Sup;Moon, Hye-Youn;Yun, Hae-Sun;Jin, Ing-Nyol
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.492-501
    • /
    • 2006
  • In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of $40^{\circ}C$. The KNU5377 strain evidenced a very similar growth rate at $40^{\circ}C$ as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at $43^{\circ}C$. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and $H^+$-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures ($43^{\circ}C$), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.

Stress as a Trigger of Pollen Embryogenesis

  • Zarsky, Viktor;Soukupova, Hana
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.411-413
    • /
    • 2000
  • The ability of microspores or young pollen grains (male gametophytes) to undergo developmetal switch to embryogenic (sporophytic) pathway exemplifies the concept of totipotency as applied to haploid posmeiotic cells. As a first step pollen is devoid of positional information provided in situ by the intact anther - by isolation and cultivation in vitro in artificial media. This is inevitably accompanied by some degree of stress response in microspore/pollen. It has been shown in both monocots and dicots that intentional stress treatment (mostly starvation or heat shock) greatly stimulates embryo induction rate. Using transgenic sHSP antisense Nicotiana tabacum we show that expression of small heat shock proteins is an integral part of successful embryo and later haploid plant production from pollen grains. Our recently published data show that sHSP chaperone function is optimal in the absence of ATP.

  • PDF

Expression Profile of Heat Shock Protein Gene Transcripts (HSP70 and HSP90) in the Nerve Ganglia of Pacific abalone, Haliotis discus hannai Exposed to Thermal Stress

  • Sukhan, Zahid Parvez;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • Heat shock proteins (HSPs) are highly conserved cellular proteins that contribute to adaptive responses of organisms to a variety of stressors. In response to stressors, cellular levels of HSPs are increased and play critical roles in protein stability, folding and molecular trafficking. The mRNA expression pattern of two well-known heat shock protein transcripts, HSP70 and HSP90 were studied in two tissues of nerve ganglia, cerebral ganglion and pleuropedal ganglion of Pacific abalone (Haliotis discus hannai). It was observed that both HSP70 and HSP90 transcripts were upregulated under heat stress in both ganglion tissues. Expression level of HSP70 was found higher than HSP90 in both ganglia whereas cerebral ganglion showed higher expression than pleuropedal ganglion. The HSP70 and HSP90 showed higher expression at Day-1 after exposed to heat stress, later decreased at Day-3 and Day-7 onwards. The present result suggested that HSP70 and HSP90 synthesize in nerve ganglion tissues and may provide efficient protection from stress.