• 제목/요약/키워드: stress relaxation equation

검색결과 51건 처리시간 0.021초

Constitutive equation and damping function for entangled polymers

  • Osaki, Kunihiro
    • Korea-Australia Rheology Journal
    • /
    • 제11권4호
    • /
    • pp.287-291
    • /
    • 1999
  • The tube model theory of entangled polymer presumes that the polymer chain holds its equilibrium contour length under certain conditions of flow; at times longer than a certain characteristic time, ${\tau}_k$, in the stress relaxation process following any flow history; in steady flow of rates smaller than ${{\tau}_k}^{-1}$; etc. Rheological phenomena associated with this presumption are discussed.

  • PDF

펄스 자기장을 이용한 잔류 응력 완화 연구 (A Study on the Stress Relief by Pulse Magnetic Treatment)

  • 오주숙;양원존;이종훈;박용호
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.149-155
    • /
    • 2011
  • Residual stress relief by pulse magnetic treatment is attractive because the process is carried out at room temperature and magnetic fields that are easy to produce and control can be used. This study shows that strong pulse magnetic treatment can lead to stress relaxation of structural steels instead of a conventional heat treatment process. And it makes a comparative study about pulse magnetic treatment and tempering by using Larson-Miller equation. When the specimen was subjected to a pulse magnetic treatment process the residual stress in the specimen was reduced by about 13.8%. It could be compared with tempering at $200^{\circ}C$ for 2hours by using thermal effect of Larson-Miller equation. As a result, it is considered that the pulsed magnetic treatment have an effect of the stress relation by tempering at $200^{\circ}C$ for 2 hours.

정적 대변형에 중첩된 미소 동적 하중을 견디는 고무재료의 점탄성 구성방정식에 관한 연구 (A viscoelastic constitutive model of rubber under small oscillatory loads superimposed on large static deformation)

  • 김봉규;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.280-285
    • /
    • 2000
  • A viscoelastic constitutive equation of rubber that is under small oscillatory load superimposed on large static deformation is proposed. The proposed model is derived through linearization of Simo's viscoelastic constitutive model and reference configuration transformation. The proposed constitutive equation is extended to a generalized viscoelastic constitutive equation that includes widely used Mormin's model as a special case using objective stress increment. Static deformation correction factor is introduced to consider the influence of Pre-strain on the relaxation function. The proposed constitutive model is tested fer dynamic behavior of rubber specimens with different carbon black contents. It is concluded from the test that the viscoelastic constitutive equation for filled rubber must include the influence of the static deformation on the time effects. The suggested constitutive equation with static deformation correction factor shows good agreement with test values.

  • PDF

나노인덴테이션을 이용한 나노물성 측정 (The measurement of nano properties using nanoindentation)

  • 권동일;이경우;김성훈;김주영;이윤희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 2005
  • The nanoindentation technique is widely used to investigate the mechanical properties of nano-microscale materials. The nanoindentation method for assessing mechanical properties at low loads and shallow depths is already well established fur the characterization of thin films as well as bulk materials. In this study, we evaluated residual stress in DLC and Au thin films usign nanoindentation technique with a new stress-relaxation model. Moreover, We suggest a composite hardness equation and quantify the magnitude of hardness increase by using an equation based on the interface hardness and the interface thickness, derived by comparing results derived from this equation and those determined in nanoindentation tests. Finally, We present an indentation size effect (ISE) model that extends the available contact depth for ISE application down to several tens of nanometers by considering the tip bluntness effect.

  • PDF

점성토의 시간의존적 응력 - 변형 특성에 관한 연구 (Study on the Time Dependent Stress-Strain Behavior of Clay)

  • 지인택;강우묵
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.134-153
    • /
    • 1988
  • This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.

  • PDF

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

경사기능재료의 설계에 관한 연구 (A Study on Design of Functionally graded Materials)

  • 최덕기;경사기
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.144-154
    • /
    • 1998
  • A functionally graded material is a nonhomogeneous material, which is composed of several different materials to maintain structural rigidity and endure high temperature loads. An analytical method is presenter to solve the unsteady heat conduction equation for nonhomogeneous materials. A one-dimensional infinite plate made of functionally graded material is considered. The approximate Green's function solution is derived and to be used to obtain the temperature distribution them the stress distributions may be obtained. The volume fraction, the porosity, the stress difference, and the stress ratio are the design parameters and are to be used to set up a systematic design procedure.

  • PDF

Kinitics of Thixotropy of Aqueous Bentonite Suspension

  • Kisoon Park;Taikyue Ree
    • 대한화학회지
    • /
    • 제15권6호
    • /
    • pp.293-303
    • /
    • 1971
  • The theological properties of aqueous suspensions of Black Hills bentonite were measured by using a Couette-type viscometer. Three kinds of flow units in aqueous bentonite suspension were postulated. Each has a different average relaxation time, one Newtonian. One of the non-Newtonian types is thixotropic, and the other is non-thixotropic. The thixotropic non-Newtonian unit is transformed to a Newtonian unit by shear stress. If the stress is relieved, the transformed unit returns to its original state. Two flow equations were derived by introducing chemical kinetics consideration for such a transition into the generalized theory of viscous flow. One equation describes the "upcurve," a diagram of rate of sheat versus shear stress, obtained by increasing the rate of shear, and the other relates to the "downcurve" obtained by decreasing the shear rate. The equations satisfactorilly describe the experimental thixotropic hysteresis of bentonite suspensions. The equations also were successfully applied to the flow curves of the suspensions containing various amounts of monovalent electrolyte (KCI).

  • PDF

사출성형 냉각조건이 열에 의한 복굴절에 미치는 영향 (Influences of Cooling Conditions on the Thermally-Induced Birefringence in Injection Molding)

  • 이호상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.258-261
    • /
    • 2007
  • Simulations of the thermally-induced residual stresses and birefringence in freely quenched plates of polycarbonate were performed by using the linear viscoelastic and photoviscoelastic constitutive equations for the mechanical and optical properties, respectively, and the first order rate equation for volume relaxation. The predictions for the birefringence showed good agreement with experimental measurements. Based on the simulation, the influences of various cooling conditions on the residual stress and birefringence in plates were investigated. The residual stress and birefringence increased with increasing initial temperature, decreasing coolant temperature and increasing heat transfer coefficient of coolants.

  • PDF

동부와 녹두전분 Gel 및 Paste의 Rheological Properties (Rheological Properties of Cowpea and Mung Bean starch Gels and Pastes)

  • 손경희
    • 대한가정학회지
    • /
    • 제26권3호
    • /
    • pp.93-102
    • /
    • 1988
  • Rheological properties of cowpea and mung bean starch gels and pastes were investigated and compared with Instron Universal Testing machine and Brabender Viscometer. As the result of puncture test of gels, yield point force of mung bean starch gel was higher than that of cowpea starch gel. Compression coefficient of cowpea starch gel calculated by Bourne's equation was lower than that of mung bean starch gel. the stress relaxation test showed that viscoelastic properties of cowpea and mung bean starch gels may be represented by six element Maxwell model consisting of three Maxwell element in parallel. Cowpea and mung bean starch pastes showed bingham pseudoplastic behavior in 3, 5, 6, 7 and 8%. The consistency index in 7∼8% of cowpea starch paste were lower than those of mung bean starch paste. concentration dependence on consistency index and yield stress in mung bean starch were higher than those of cowpea starch. The yield stress of starch pastes was significantly correlated with yield point force by puncture test (r=0.996).

  • PDF