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Constitutive equation and damping function for entangled polymers
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Abstract

The tube model theory of entangled polymer presumes that the polymer chain holds its equilibrium contour
length under certain conditions of flow; at times longer than a certain characteristic time, T, in the stress
relaxation process following any flow history; in steady flow of rates smaller than T,”'; etc. Rheological phe-
nomena associated with this presumption are discussed.

1. Introduction

The K-BKZ constitutive model is notable for its wide
applicability and good prospect in view of the molecular
picture among the constitutive models for entangled
polymers (Larson, 1988). Here we refer to the model as a
single-integral memory fluid with a strain-dependent
memory kernel. The full description of the equation for
any one material is not very simple since the model
includes at least two independent strain tensors and two
memory functions. One can work out some simplified
equation to fit the data for shear and uniaxial elongation,
for example, but cannot be sure whether it is applicable to
other types of deformation. In this respect the model is still
being developed.

The model is simple for shear deformation as far as the
shear stress, o and the first normal stress difference, N,
is concerned. This is because the corresponding com-
ponents have simple forms for any choice of allowable
strain tensors. The study of shear deformation is not suit-
able for the general development of the constitutive model.
On the other hand, one can investigate the detailed vari-
ation of the memory function with molecular parameters like
molecular weight through the study of shear deformation.
The shear and normal stresses can be written as follows.

o(t) = .F_oo m(t-t,| Vi I)Yn’dt‘ (1) »
N(D) = [ m(t—t,| ¥ ¥ dt )
m(t,y) = -29L1) 3)

Here v, is the magnitude of shear applied in the period
from t to t' and m (t,y) is the memory function for shear
deformation. The function G(t,y) is the shear relaxation
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modulus or the ratio of the shear stress to the magnitude of
shear, v, at time t after a constant shear is applied to the
material. This function represents most of the rheological
behavior in shear deformation and ¢ and N, for any flow
history can be derived from the data of G(t,y).

One of the important features of G(t,y) for entangled
polymers (Osaki, 1993) is that it can be factorized into
functions of time, t and strain, 7, at sufficiently long times;
longer than T,, say.

G(ty) = G® h() (t>1) @)

Here G(t) is the linear relaxation modulus, i. e., the
relaxation modulus at the limit of y= 0. The function h(y)
is called the damping function and represents the strain
dependence of the relaxation modulus. The separability is
a good approximation over relatively wide time ranges
for polymers with wide molecular weight distributions,
specifically for commercial polymers. The separability
simplified the formula of constitutive equation and was
extensively utilized for rheological calculations (Larson,
1988).

In spite of the early results indicating that the separability
is valid only at long times (Finaga et al., 1993; Fukuda et
al., 1975), it is sometimes described as a basic and general
property of entangled polymers even at short times. I can
agree with the author of a textbook in engineering appli-
cation not writing too rigorous definitions for a certain
feature provided that the readers use the description only
for the specific application. I cannot agree with the reader
if he or she raises the failure of separability as a proof of
wall slip, for example. Another extreme attitude in recent
studies is to claim that the separability is completely wrong
until at very long times, say the time comparable to the
longest relaxation time of the material, based on delicate
theories or on the data taken with extremely high precision.
This statement should be valid for a complex material like
polymer; for example, a synthetic "monodisperse polymer”
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is composed of molecules with various molecular weights.
On the other hand, the separability is a fact at an allowable
level, though not unanimous, of approximation and may
possibly give clue to the deeper understanding of entan-
glement.

Here we revisit the separability and investigate its
implication in some rheological functions.

2. Standard damping function and separability
criterion

A remarkable property of the damping function, h(y), is
that it is approximately a universal function of the mag-
nitude of shear, v, for linear polymers with not too wide
molecular weight distributions (Osaki, 1993). The behavior
at relatively low strain was close to the prediction of a
corotational constitutive model and thus suggested that the
origin of the damping was geometrical, in contrast with
specific intermolecular interaction like stickiness among
chains, even at the early stage of the study (Fukuda et al.,
1975).

The tube model theory of entanglement by Doi and
Edwards revealed the origin of the damping (Doi and
Edwards, 1986). According to the theory, the entanglement
points move in proportion to the instantaneous macro-
scopic deformation of the material and accordingly the
entangled chain stretches and orients to the direction of
deformation. When the deformation is large, the stretched
chain shrinks rather rapidly passing through the entangled
points so that some of the entanglements, located close to
the chain ends, are lost. Also the tension of the chain
decreases in this process. However, the orientation remains
unchanged so that some small stress remains. The stress
then relaxes in the same manner as that in small defor-
mations. In summary, at large deformation, the modulus
decreases rather rapidly to some extent, namely by a factor
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h, and then decreases in proportion to G(t) at longer times.
The characteristic time 7, in Fig. 1 would represent the end
of the shrink process. It is easily seen that the damping
function for entangled star-branched polymer should agree
with that of linear chains (Doi and Edwards, 1986). This
prediction was experimentally confirmed (Osaki et al., 1990).
The model cannot be applied without large modifications
to polymers with two or more branch points.

The molecular picture as well as the experimental obser-
vation, like Fig. 1, involves a characteristic time as a cri-
terion of separability. In the tube model theory it is the
equilibration time of the fluctuation of chain density in the
tube, or the equilibration time of the chain contour length.
The process could be modeled with a Rouse model con-
fined in a tube and the characteristic time can be derived as
(Doi, 1980)

Tr = ARM’ &)

Here Ay is a parameter representing the frictional property
of segment and may vary with the chemical structure of
molecule, the concentration, and the temperature. It is
independent of the molecular weight, M, or the entan-
glement molecular weight, M.. In investigating the prop-
erties of characteristic times like Tg and Ty, it is convenient
to work with the ratios, T,/Tg and 1,/T,, to avoid the effect
of the segmental friction. The maximum relaxation time,
T, can be written as

M 3.5
o =AMt ) ©)
where A is a parameter similar to Ag. Eq. (6) describing
the experimental result cannot be derived from the original
Doi-Edwards theory but from a modified version involving
the effect of finite chain length (Milner and McLeish,
1998).
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Fig. 1. Shear relaxation modulus, G(t,Y), for polystyrene in tricresyl phosphate; M = 5.48 X 10% and c=0.1 g cm”. Data were taken at
40°C and reduced to 0°C. Y=0.2, 1, 2, 3, 4, and 4.9 from top to bottom (left panel). Curves of G(t,Y) shifted vertically by factor
h. G(1,y) can be separated as eq. (4) at times longer than a certain time, Ty (right panel).
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The characteristic time determined for some polystyrene
solutions could be related with the maximum relaxation
time through (Osaki er al. 1982),

15
f:‘l = 0.124(1%;[—) )

Equation (7) is consistent with eq. (5) and (6) if T, is pro-
portional to Tz. In the earlier paper, we proposed that Ty
would be about 51 based on some subtle handling of the
relaxation spectra.

Since the earlier data were taken for solutions in poly-
chlorinated biphenyl, now prohibited material, we have to
start over with other solvents for more extensive study
including good data for small deformation. Fortunately, the
T, values for such solutions taken with an automated fancy
apparatus were close enough to those estimated with eq.
(7); see Fig. 3. This result may imply that the separability
criterion defined earlier for data with a hand driven appa-
ratus with relatively low precision can still be applied.

3. Rouse-like relaxation of entangled polymers

In the meantime we have made some progress in inter-
pretation of the relaxation spectra at small deformations
(Inoue and Osaki, 1996). Birefringence measurements
carried out in the process of dynamic mechanical meas-
urements revealed that a portion of stress in the glass-to-
rubber transition zone is of entropic origin and is asso-
ciated with the relaxation spectrum like that of the Rouse
model; i.e., the power law spectrum proportional to T,
Such a concept was actually stated by Ferry as the con-
tribution to stress of the chain strand shorter than the entan-
glement strand (Ferry, 1980). It was adopted also by Doi as
the chain motion of relatively short scales within the tube
(Doi, 1980). Usually the Rouse-like spectrum is not easy to
detect in the mechanical spectrum of polymer melts
because it is buried in the large contribution of the glassy
stress in the transition zone (Inoue and Osaki, 1996).
Birefringence data are required for the analysis. However,
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Fig. 2. Damping function, h(y), for the data of Fig. 1. Curve
represents Doi-Edwards prediction without independent
alignment assumption.
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Fig. 3. Characteristic time T, and Ty for polystyrene solutions.
Line for Ty indicates earlier results, eq. (7). Line for Ty
corresponds to a relation T, = 30Tg. Dashed line indicates
a possible variation of T/Tg at low N.

the glassy component is more affected by dilution than the
Rouse contribution is and it becomes relatively small for
solutions as seen below.

Fig. 4 gives the complex modulus of the polystyrene
solution referred to in Figs. 1 and 2. The measured result
can be written as

' e G it

G'(®)+iG"(®) = %Til_mii &)
The set of parameters G, and T, are shown in Fig. 4. The
Xs represent the "entanglement” portion of the spectrum
and the dots represent the "Rouse"” portion. The longest relax-
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Fig. 4. Complex modulus of polystyrene in tricresyl phosphate;
M =5.48%10% and ¢ = 0.1 g cm™. Thick curves represent
data taken at various temperatures and reduced to 0°C.
Vertical shift factor, by, was approximately proportional to
absolute temperature, T. Thin curves represent results of
fitting using the relaxation spectrum indicated by xs and dots.
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ation times for these portions are regarded as T, and Tg,
respectively. The G, values for the Rouse portion was
assumed to be equal to Gg = cRT/M. Those for the entan-
glement portion were determined by curve fitting.

The ratio T/tx for the sample of Fig. 4, together with
those for a few other samples, is shown in Fig. 3. In con-
trast with the earlier guess, eq. (7), the ratio is far much
larger than the ratio t/t,. The result for large N may be
described as

T = 3018 (N>>1) %)

In the earlier study the factor was guessed as about 5
instead of 30. The discrepancy came from the overestimate
of Tz due to the earlier assumption that T/Tx would be
about 1 at N = 1 and the ratio would increase as N'°. The
present result revealed that the increase was much stronger
at low N, approximately like N*°. Thus the earlier result
underestimated T/Tz at high N.

The present observation is consistent with the known
result (Graessley, 1974) that at low N (but larger than 2),
the steady shear compliance, J., is proportional to the
molecular weight, M, while the viscosity, , is proportional
to M**. Since the maximum relaxation time is approx-
imately proportional to J, M, it may well vary like N** at
relatively low N.

4. The characteristic times and steady shear flow

4.1. Comparison of Two Characteristic Times, % and 7,

The characteristic time T, is much larger than Tz. Suppose
the former represents the completion of the process
associated with the latter as assumed in the Doi theory for
the shrink process. Considering the procedure of producing
the lower panel of Fig. 1. and the precision of measurement,
one may say that T, is of the order of 5tz. The result
represented by eq. (9) may imply that the "shrink process"
that completes at T, is associated with a characteristic time
longer than Tz and accordingly the Doi theory for the
shrink process (Doi, 1980) does not correspond to the real
process of stress relaxation. The proportionality of eq. (9)
seems to indicate the importance of the single chain shrink
process as assumed by Doi. The process may be retarded
for some unknown reason.

4.2. The Separation Time, T,

The characteristic time T, defines the time over which the
shear relaxation modulus is separable. In view of the tube
model theory and our interpretation, the characteristic time
T represents the completion of the chain contour length
equilibrium. The original Doi-Edwards theory is supposed
to be applicable for the rate of shear less than 7, and for
times longer than T, in any stress relaxation process. In
view of the phenomenological model, the single-integral
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memory fluid model with strain-dependent memory func-
tion seems to have a wider range of applicability than such
ranges as defined with the parameter T, as seen later.
Suppose the characteristic time T, represents the com-
pletion of the chain contour length equilibrium. Then the
stress cannot be very high at time T, in the relaxation
process at a fixed shape after any strain history. When the
chain contour length is equilibrated, the stress is written as

0=Gy {uwy —pl (10)

Here the quantity with bracket represents the average of
the diadic tensor of tangent vector, u, of tube segment and
Gy is the entanglement modulus. The largest possible
principal value the tensor is unity and the smallest possible
is zero so that the principal values of the deviatoric stress
tensor, G,, at time T, does not exceed Gy. In an earlier
paper (Osaki and Kurata, 1980), we wrote it should not
exceed 3Gy but Gy is more reasonable.

For the same reason, ¢, should not exceed Gy in the
steady shear flow at the rate of shear 7,

6,<Gy at 7, time in relaxation; at rate 1.} in
steady shear 11

If the orientation is high, i.e., N, is much higher than o,
then o, should be close to Gy.

An example of relation (10) is given in Fig. 5. The value
in steady shear of rate ' is slightly lower than Gy. Also
the value in the relaxation process at t = T, approaches the
same value at high rate of shear. Some other data in steady
shear gave similar results as seen in Figure 6.

4.3. The Rouse Relaxation time, T3
As seen in Fig. 1, the relaxation modulus, G(t,y), at high
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Fig. 5. The highest principal stress in steady shear and at time Ty
in the relaxation process after cessation of steady shear.
Data by Crawley (1976) for polystyrene in tricresyl phos-
phate; M =1.8x10°, ¢=0.138 g cm”, 25°C.
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Fig. 6. Shear stress, O, the first normal stress difference, N;, and
principal stress, G, in steady shear flow of polystyrene in
tricresyl phosphate; M =5.48 X 10° and ¢ =0.07 g cm”.
Marks represent data taken at various temperatures and
reduced to 0°C. Curves represent prediction of K-BKZ
model with memory function obtained from G(t,Y). Strain
dependence at various times was precisely taken into
account. Thin lines represent contribution from the Rouse
spectrum similar to one shown by dots in Fig. 4. Big
crosses show (‘C{l, G)), (‘Ck’l, Gy), and (T, Gg), from left.

strain decreases much around the time t=1gz. Thus Ty is
likely to be related to the shrink process even if it is not the
longest time of the process. What else phenomena could
we find concerning this characteristic time?

For highly entangled systems, the Rouse relaxation time,
T, 18 very small compared with other times like 7, or 7.
The rate of steady shear as high as Tz is usually not attain-
able. Fig. 6 shows some stress components in steady shear
flow for a system with relatively low degree of entan-
glement, N =7. It is seen that the curves of log (stress) vs.
log (rate) exhibit inflection points at the rate approximately
equal to Ty'. A K-BKZ model calculation seems to indi-
cate that the inflection, or the sharp upturn of stresses at
rates higher than , is due to the relaxation modes of Rouse
spectrum such as shown by dots in Fig. 4. The Rouse
model without any damping predicts that

2

o = EGutet (12)
Tl:4 2.2

N, = 4_5GRTR Y (13)
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where G = ¢cRT/M. These are shown with thin lines in Fig. 6.

The assumption that the Rouse modes are not affected by
the magnitude of strain is consistent with the data of G(t,y).
The present result may indicate that the Rouse modes sup-
port the stress of stretched chains at high rates of strain
where the shrink process is not allowed.

5. Concluding remarks

The separability criterion of the shear relaxation mod-
ulus, G(t,Y), for entangled polymers gives a characteristic
time, T,, which is much larger than but is probably related
to the Rouse relaxation time, Tz. These parameters are
reasonably related to some features of stress in steady
shear flow.

The same type of study may possibly present some clue
in the rheology of branched polymers, where the K-BKZ
model seems to be acquiring credits in some experiments
(Kasehagen and Macosko, 1998) while a completely dif-
ferent molecular theory is making a rapid progress (Inkson
et al., 1999).
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