• Title/Summary/Keyword: stress related gene expression

Search Result 269, Processing Time 0.027 seconds

Investigation of the effect of water extract from Cudrania tricuspidata fruit on tight junction in human keratinocyte (꾸지뽕 열매 추출물이 인간 유래 각질 형성 세포의 밀착연접에 미치는 영향)

  • Lee, Sang Soo;Choi, Sun Kyung;Kim, Jae Whan;Han, Hyo Sang;Kim, Kee Kwang
    • The Korea Journal of Herbology
    • /
    • v.34 no.1
    • /
    • pp.99-107
    • /
    • 2019
  • Objectives : Cudrania tricuspidata (C. tricuspidata) is well-known traditional herbal remedy and its root, leaf and fruit were used for treatment of inflammation, tumor and painkilling. However, effect of C. tricuspidata fruit on tight junction is still unknown. The aim of this research was to determine the effect of C. tricuspidata fruit extract on human keratinocyte HaCaT cells. Methods : The antioxidant effects of water extract of C. tricuspidata (WECT) and ethanol extract of C. tricuspidata (EECT) were analyzed by using an ABTS assay. To confirm the cytotoxicity of WECT and EECT, MTS assay was performed. The mRNA expression levels of tight junction related genes were analyzed using quantitative RT-PCR analysis. Furthermore, dispase assay was used to investigate the alteration of cell-cell adhesion strength of EECT treated HaCaT cells. Results : WECT and EECT showed strong antioxidant activity. No obvious cytotoxicity was observed in both WECT and EECT until $2.0mg/m{\ell}$ concentration. The mRNA expression level of Claudin 6 were significantly increased by EECT treatment, whereas the WECT did not affect the expression of Claudin 6. Furthermore, EECT treatment enhances cell-cell adhesion strength. Conclusions : In this study, we investigated the physiological activities of the extracts of Cudrania tricuspidata fruit extracts on human keratinocytes by two different extraction methods. EECT might have an anti-aging activity on the skin by reducing oxidative stress. Moreover, it may be a useful ingredient in atopic dermatitis and skin-moisturizing, given its effects of altering Claudin 6 gene expression and enhancing cell-cell adhesion strength.

Molecular Characterization of Metallothionein Gene of the Korean Bitterling Acheilognathus signifer (Cyprinidae) (묵납자루 (Acheilognathus signifer; Cyprinidae) metallothionein 유전자의 클로닝 및 특징 분석)

  • Lee, Sang-Yoon;Bang, In-Chul;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.10-20
    • /
    • 2011
  • Genetic determinant for metallothionein (MT), a cysteine-rich protein playing essential roles in metal detoxification and homeostasis, was characterized in the Korean bitterling (Acheilognathus signifer, Cyprinidae), an endemic fish species. The full-length A. signifer MT (AsMT) cDNA (551 bp) is composed of a single open-reading frame (ORF) to encode a polypeptide of 60 amino acids containing 20 cysteine residues whose positions are conserved in most cypriniform MTs. At the genomic level, the AsMT (2,593 bp spanning the 5'-flanking region to the 3'-untranslated region) represented a conserved tripartite (three exons interrupted by two introns) structure with AT-rich introns. The upstream regulatory region (-1,914 bp from the ATG initiation codon) of AsMT displayed various sites and motifs for transcription factors involved in the metal-mediated regulation and stress/immune responses. The AsMT transcript was ubiquitously detected in various organs with variable expression levels, where the ovary and intestine showed the highest expression, while the heart and skeletal muscle represented the lowest level. During an exposure to copper (immersion in $0.5\;{\mu}M$ Cu for 48 h), the levels of AsMT transcripts were significantly elevated in the liver (more than 3.5-fold), moderately in the gill, kidney, and spleen (ranging from 1.5- to 2.5-fold), and barely in the brain and intestine. Results of this study could form a useful basis to explore the metal-related stress physiology of this endangered fish species.

TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade

  • Han, Zhezhu;Kang, Dongxu;Joo, Yeonsoo;Lee, Jihyun;Oh, Geun-Hyeok;Choi, Soojin;Ko, Suwan;Je, Suyeon;Choi, Hye Jin;Song, Jae J.
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.4.1-4.19
    • /
    • 2018
  • Transforming growth factor $(TGF)-{\beta}$ signaling is increasingly recognized as a key driver in cancer. In progressive cancer tissues, $TGF-{\beta}$ promotes tumor formation, and its increased expression often correlates with cancer malignancy. In this study, we utilized adenoviruses expressing short hairpin RNAs against $TGF-{\beta}1$ and $TGF-{\beta}2$ to investigate the role of $TGF-{\beta}$ downregulation in cancer cell death. We found that the downregulation of $TGF-{\beta}$ increased the phosphorylation of several SAPKs, such as p38 and JNK. Moreover, reactive oxygen species (ROS) production was also increased by $TGF-{\beta}$ downregulation, which triggered Akt inactivation and NOX4 increase-derived ROS in a cancer cell-type-specific manner. We also revealed the possibility of substantial gene fluctuation in response to $TGF-{\beta}$ downregulation related to SAPKs. The expression levels of Trx and GSTM1, which encode inhibitory proteins that bind to ASK1, were reduced, likely a result of the altered translocation of Smad complex proteins rather than from ROS production. Instead, both ROS and ROS-mediated ER stress were responsible for the decrease in interactions between ASK1 and Trx or GSTM1. Through these pathways, ASK1 was activated and induced cytotoxic tumor cell death via p38/JNK activation and (or) induction of ER stress.

The spy-gfp Operon Fusion in Salmonella Enteritidis and Salmonella Gallinarum Senses the Envelope Stress (Salmonella Enteritidis와 Salmonella Gallinarum의 세균막 스트레스를 인식하는 spy-gfp 오페론 융합)

  • Kang, Bo Gyeong;Bang, Iel Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.208-219
    • /
    • 2018
  • Emergence of drug resistant strains of Salmonella enterica threatens milk processing and related dairy industries, thereby increasing the need for development of new anti-bacterials. Developments of antibacterial drugs are largely aimed to target the bacterial envelope, but screening their efficacy on bacterial envelope is laborious. This study presents a potential biosensor for envelope-specific stress in which a gfp reporter gene fused to spy gene encoding a periplasmic chaperone protein Spy (spheroplast protein y) that can sense envelope stress signals transduced by two major two-component signal transduction systems BaeSR and CpxAR in Salmonella enterica serovars Enteritidis and S. Gallinarum. Using spy-gfp operon fusions in S. Enterititis and S. Gallinarum, we found that spy transcription in both serovars was greatly induced when Salmonella cells were forming the spheroplast and were treated with ethanol or a membrane-disrupting antibiotic polymyxin B. These envelope stress-specific inductions of spy transcription were abrogated in mutant Salmonella lacking either BaeR or CpxR. Results illustrate that induction of Spy expression can be efficiently triggered by two-component signal transduction systems sensing envelope stress conditions, and thereby suggest that monitoring the spy transcription by spy-gfp operon fusions would be helpful to determine if developing antimicrobials can damage envelopes of S. Enteritidis and S. Gallinarum.

MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

  • Ryu, Hojin;Laffont, Carole;Frugier, Florian;Hwang, Ildoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Ethanol Extracts of Rheum undulatum and Inula japonica Protect Against Oxidative Damages on Human Keratinocyte HaCaT cells through the Induction of ARE/NRF2-dependent Phase II Cytoprotective Enzymes (종대황과 선복화 에탄올 추출물의 인간 피부 세포주인 HaCaT 세포에서 NRF2/ARE에 의존적인 유전자 발현의 유도를 통한 항산화 효과)

  • Yoo, Ok-Kyung;Lee, Yong-Geol;Do, Ki-Hoan;Keum, Young-Sam
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.310-317
    • /
    • 2017
  • Mammalian cells control cellular homeostasis using a variety of defensive enzymes in order to combat against environmental oxidants and electrophiles. NF-E2-related factor-2 (NRF2) is a transcription factor that, in response to an exposure to oxidative stress, translocates into the nucleus and modulates the inducible expression of various phase II cytoprotective enzymes by binding to the antioxidant response element (ARE). In the present study, we have acquired 400 ethanol extracts of traditional medicinal plants and attempted to find out possible extract(s) that can increase the NRF2/ARE-dependent gene expression in human keratinocytes. As a result, we have identified that ethanol extracts of Rheum undulatum and Inula japonica strongly activated the ARE-dependent luciferase activity in HaCaT- ARE-luciferase cells. Exposure of ethanol extracts of Rheum undulatum and Inula japonica increased the viability and activated transcription and translation of NRF2-dependent phase II cytoprotective enzymes in HaCaT cells, such as heme oxygenase-1 (HO-1) and NAD[P]H:quinone oxidorecutase-1 (NQO1). In addition, ethanol extracts of Rheum undulatum and Inula japonica suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced generation of intracellular reactive oxygen species (ROS), thereby inhibiting the formation of 8-hydroxyguanosine (8-OHG) and 4-hydroxynonenal (4-HNE) in HaCaT cells. Together, our results demonstrate that ethanol extracts of Rheum undulatum and Inula japonica exert anti-oxidant effects via the induction of NRF2/ARE-dependent gene expression in human keratinocytes.

Effects of Hypoxia on the Fertilization and Early Development of Sea Urchin, Strongylocentrotus nudus (둥근성게 (Strongylocentrotus nudus)의 수정과 초기 배발생에 미치는 빈산소의 영향)

  • Lee, Gun-Sup;Hwang, Jin-Ik;Chung, Young-Jae;Kim, Dong-Giun;Moh, Sang-Hyun;Chang, Man;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3785-3791
    • /
    • 2012
  • Dissolved oxygen is one of the most important factors controlling growth in aquatic organisms. Hypoxia is generally defined as dissolved oxygen less than 2.8 mg $O_2/L$ (equivalent to 2 mL $O_2/L$ or 91.4 mM). Therefore, hypoxia zone can cause a serious problem in marine ecosystem. In this study, to investigate embryotoxic (fertilization and embryo development rates) effects of hypoxia on sea urchin Strongylocentrotus nudus were exposed to dissolved oxygen levels of 7.6 mg $O_2/L$ (normoxia) and 1.8 mg $O_2/L$ (hypoxia) for 2 days at $15^{\circ}C$ and 33 ‰. Also, Expression levels of stress related gene (HSP70) and antioxidant related gene (glutathione reductase) in the sea urchins exposed to hypoxia were confirmed by Immunoblotting and RT-PCR analysis. In results, we showed that developmental rates were dramatically reduced in hypoxia condition. Molecular analysis demonstrated that higher HSP70 (5.5 fold) and glutathione reductase gene (2.79 fold) were present in the sea urchin exposed to hypoxia. Our results suggested that hypoxia can cause the abnormal development and elicits a stress and antioxidant response on sea urchin.

Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing (Next generation sequencing 방법을 이용한 적육계 복숭아와 백육계 복숭아의 전사체 분석)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang-Hee;Shin, Il Sheob;Kim, Hyun Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • Differences of gene expression between red flash peach cultivar and white flash peach cultivar were investigated by Nest-generation sequencing (NGS). EST from the red flash peach cultivar and white flash peach cultivar were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, temperature stress, ethylene signal pathway were significantly higher in white flash peach cultivar than in red flash peach cultivar. On the other hand, the up-regulation of proteins involved in anthocyanin and flavonol biosynthesis and protein degradation and sorbitol metabolism were observed in red flash peach cultivar. Chalcone synthase was preferentially expressed in the red flesh peach cultivar, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. Anthocyanin pathway related genes CHS, F3H, DFR, LDOX, UFGT differentially expressed between red flash peach cultivar and white flash peach cultivar. These results suggest that red flash peach cultivar and white flash peach cultivar have different anthocyanin biosynthesis regulatory mechanisms.

Expression Study on the Scaffold Gene of CRL4 Complex in Rice (Oryza sativa L.) (벼에 존재하는 CRL4 복합체 scaffold 유전자의 발현 양상에 대한 연구)

  • Bae, Yoowon;Kim, Hani;Kim, Sang-Hoon;Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1132-1139
    • /
    • 2018
  • The stability of diverse cellular proteins in eukaryotes is regulated via ubiquitination. Moreover, E3 ligase plays a crucial role in determining substrate specificity and transfers ubiquitins into the substrates during the ubiquitination process. As a type of multi-subunit E3 ligase, cullin4 (CUL4)-based E3 ligase (CRL4) complex is involved in a variety of cellular processes, such as hormonal and stress responses in plants. In spite of several reports on the versatile roles of CRL4 in various signalings in Arabidopsis, CRL4's function in rice has been poorly known. To learn about CRL4-mediated cellular processes in rice in more detail, OsCUL4 that exhibits the highest homology with Arabidopsis CUL4 was isolated, and its expression patterns in various tissues and in response to plant hormones and abiotic stresses were monitored. Exogenous application of ABA or cytokinin increased the transcript levels of the OsCUL4 gene. Moreover, OsCUL4 was significantly upregulated in response to drought and salt stresses. These findings imply that OsCUL4 may be functionally related to ABA- and/or cytokinin-mediated cellular responses. OsCUL4 directly interacted with OsDDB1, an adaptor protein of CRL4, indicating that OsCUL4 can act as a scaffold protein of CRL4. An expression study on the OsCUL4 gene from this report could be used as a starting point to elucidate cellular responses in which a CRL4-mediated ubiquitination process is involved in rice.