References
- Birdsell, D. C. and Cota-Robles, E. H. 1967. Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J. Bacteriol. 93:427-437.
- Burkinshaw, B. J. and Strynadka, N. C. 2014. Assembly and structure of the T3SS. Biochim. Biophys. Acta. 1843:1649-1463. https://doi.org/10.1016/j.bbamcr.2014.01.035
- Bury-Mone, S., Nomane, Y., Reymond, N., Barbet, R., Jacquet, E., Imbeaud, S., Jacq, A. and Bouloc, P. 2009. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS. Genet. 5:e1000651. https://doi.org/10.1371/journal.pgen.1000651
- Chmielewski, R. A. N. and Frank, J. F. 2003. Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety 2:22-32. https://doi.org/10.1111/j.1541-4337.2003.tb00012.x
- Cho, Y., Park, Y. M., Barate, A. K., Park, S. Y., Park, H. J., Lee, M. R., Truong, Q. L., Yoon, J. W., Bang, I. S. and Hahn, T. W. 2015. The role of rpoS, hmp, and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens. J. Vet. Sci. 16:187-194. https://doi.org/10.4142/jvs.2015.16.2.187
- Goemans, C., Denoncin, K. and Collet, J. F. 2014. Folding mechanisms of periplasmic proteins. Biochim. Biophys. Acta. 1843:1517-1528. https://doi.org/10.1016/j.bbamcr.2013.10.014
- Grassl, G. A. and Finlay, B. B. 2008. Pathogenesis of enteric Salmonella infections. Curr. Opin. Gastroenterol. 24:22-26. https://doi.org/10.1097/MOG.0b013e3282f21388
- Hagenmaier, S., Stierhof, Y. D. and Henning, U. 1997. A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. J. Bacteriol. 179:2073-2076. https://doi.org/10.1128/jb.179.6.2073-2076.1997
- Henderson, B., Allan, E. and Coates, A. R. 2006. Stress wars: The direct role of host and bacterial molecular chaperones in bacterial infection. Infect. Immun. 74:3693-3706. https://doi.org/10.1128/IAI.01882-05
- Hur, J., Jawale, C. and Lee, J. H. 2012. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International 45:819-830. https://doi.org/10.1016/j.foodres.2011.05.014
- Jeong, S. M., Lee, H. J., Park, Y. M., Kim, J. S., Lee, S. D. and Bang, I. S. 2017. Inducible spy transcription acts as a sensor for envelope stress of Salmonella typhimurium. Korean J. Food Sci. Anim. Resour. 37:134-138. https://doi.org/10.5851/kosfa.2017.37.1.134
- Kousta, M., Mataragas, M., Skandamis, P. and Drosinos, E. H. 2010. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 21:805-815. https://doi.org/10.1016/j.foodcont.2009.11.015
- Oliver, S. P., Jayarao, B. M. and Almeida, R. A. 2005. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease 2:115-129. https://doi.org/10.1089/fpd.2005.2.115
- Quan, S., Koldewey, P., Tapley, T., Kirsch, N., Ruane, K. M., Pfizenmaier, J., Shi, R., Hofmann, S., Foit, L., Ren, G., Jakob, U., Xu, Z., Cygler, M. and Bardwell, J. C. 2011. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat. Struct. Mol. Biol. 18:262-269. https://doi.org/10.1038/nsmb.2016
- Rowley, G., Spector, M., Kormanec, J. and Roberts, M. 2006. Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 4:383-394. https://doi.org/10.1038/nrmicro1394
- Ryan, C. A., Nickels, M. K., Hargrett-Bean, N. T., Potter, M. E., Endo, T., Mayer, L., Langkop, C. W., Gibson, C., McDonald, R. C., Kenney, R. T., Puhr, N. D., McDonnell, P. J., Martin, R. J., Cohen, M. L. and Blake, P. A. 1987. Massive outbreak of antimicrobial-resistant salmonellosis traced to pasteurized milk. JAMA. 258:3269-3274. https://doi.org/10.1001/jama.1987.03400220069039
- Srivastava, S. K., Lambadi, P. R., Ghosh, T., Pathania, R. and Navani, N. K. 2014. Genetic regulation of spy gene expression in Escherichia coli in the presence of protein unfolding agent ethanol. Gene 548:142-148. https://doi.org/10.1016/j.gene.2014.07.003
- International Commission on Microbiological Specificifications for Foods Staff. 2002. Salmonella in dried milk. Microbiological Testing in Food Safety Management. Boston, MA: Springer US, pp. 273-284.
- Sun, J. S. and Hahn, T. W. 2012. Comparative proteomic analysis of Salmonella enterica serovars Enteritidis, Typhimurium and Gallinarum. J. Vet. Med. Sci. 74:285-291. https://doi.org/10.1292/jvms.11-0366
- Valdivia, R. H. and Falkow, S. 1996. Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22:367-378. https://doi.org/10.1046/j.1365-2958.1996.00120.x
- Wales, A. D., Allen, V. M. and Davies, R. H. 2010. Chemical treatment of animal feed and water for the control of Salmonella. Foodborne Pathog. Dis. 7:3-15. https://doi.org/10.1089/fpd.2009.0373
- Wolf, D. and Mascher, T. 2016. The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: Expression systems and whole-cell biosensors. Appl. Microbiol. Biotechnol. 100:4817-4829. https://doi.org/10.1007/s00253-016-7519-3