• Title/Summary/Keyword: stress ranges

Search Result 270, Processing Time 0.028 seconds

The Creep Characteristics of Zirconium-base Alloy (Zirconium계 합금의 Creep특성)

  • Im, S.H.;Rhim, S.K.;Kim, K.H.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.198-208
    • /
    • 1997
  • The-steady-state creep mechanism and behavior of Zircaloy-4 used as cladding materials in PWR have been investigated in air environment over the temp, ranges from 600 to $645^{\circ}C$ and stress ranges from 4 to $7kg/mm^2$. The stress exponents for the creep deformation of this alloy, n were decreased 4.81, 4.71, 4.64, and 4.56 at 600, 615, 630 and $645^{\circ}C$, respectively; the stress exponents decreased with increasing the temperature and got closer to about 5. The apparent activation energies, Q, were 62.1, 60.0, 57.9 and 55.4 kcal/mole at stresses of 4, 5, 6, $7kg/mm^2$, respectively; the activation energies decreased with increasing the stress and were close to those of volume self diffusion of Zr in Zr-Sn-Fe-Cr system. In results, it can be considered that the creep deformation for Zircaloy-4 was controlled by the dislocation climb over the ranges of this experimental conditions. Larson-Miller parameter, P, for the crept specimens was obtained as P=(T+460)(logt,+23). The failure plane observed by SEM slightly showed up intergranular fracture at this experiment ranges. However, it was essentially dominated by the dimple phenomenon, which was a characteristics of the transgranular fracture.

  • PDF

A Study on the Cognitive Coping Strategies by Job Stress Level of Call Center Workers (콜센터 근로자의 직무 스트레스 수준에 따른 인지적 대처전략)

  • Kim, Jung-Im;Kim, Soon-Lae;Lee, Jin-Hwa
    • Korean Journal of Occupational Health Nursing
    • /
    • v.22 no.3
    • /
    • pp.257-265
    • /
    • 2013
  • Purpose: This study aimed to investigate the job stress level of call center workers and figure out its relation with cognitive emotion regulation strategies as a cognitive coping strategy. Methods: Data collection was conducted on 985 call center workers, working for K companies in Korea. ANOVA, t-test, Scheffe's test and multiple regression have been conducted for the data analysis using SAS 9.0 software. Results: The total job stress score of subjects ranges $Q_{25{\sim}49}$ (the lower 50%) whereas the score of job demand and job control ranges $Q_{50{\sim}74}$ (the upper 50%), and its sectional job stress level is high. Since job stress is the major factor affecting cognitive emotion regulation strategies, it is shown that when the job stress score gets higher, the score of positive cognitive emotion regulation strategies gets decreased but the score of negative cognitive emotion regulation strategies, increased. Conclusion: Based on the results of this study, it is necessary to develop and apply an effective stress easing method for call center workers which reduces negative cognitive emotion regulation strategies and increases positive ones.

Fatigue Crack Growth Behavior for Rail Steel under Mixed Mode Variable Amplitude Loading (혼합모드 변동하중하에서 레일강의 피로균열 진전거동)

  • Sohn, Kyoung-Ju;Seo, Young-Bum;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.261-266
    • /
    • 2003
  • The growth behavior of the transverse crack, which was one of the most dangerous damages of rail defects, was investigated under mode I and mixed mode loading in rail steel. In the case of variable amplitude loading, the fatigue crack growth behavior was discussed using characteristic stress intensity factor ranges ${\Delta}_{rms}$. In addition, characteristic comparative stress intensity factor ranges ${\Delta}_{V,rms}$ was proposed to evaluate the quantitative effects of the variable amplitude under mixed mode loading. As a result, crack growth rate under variable amplitude loading was faster than that under constant amplitude loading.

  • PDF

Temperature-dependence of Mechanical Properties of Die Steel STD61 (금형강 STD61의 온도에 따른 기계적 성질의 변화)

  • 여은구;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.435-440
    • /
    • 2004
  • The temperature in hot forming of metallic materials, such as hot extrusion and hot forging, ranges from $300^{\circ}C$ to $900^{\circ}C$. Correspondingly, the die also exhibits high temperatures close to that of a work piece and its life is limited generally by high temperature fatigue. Thus, the analysis of high temperature fatigue would need the mechanical properties over the wide ranges of temperature. However, very few studies on the high temperature fatigue of brittle materials have been reported. Especially, the study on the fatigue behavior over such transition temperature regime is very rare. In this paper, the stress-strain curves and stress-life curves of a die steel such as STD61 are experimentally obtained. The wide ranges of temperature from $300^{\circ}C$ to $900^{\circ}C$ are considered in experiments and the transition temperature zone is carefully examined.

Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test (도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가)

  • Seo, Sung-Il;Park, Choon-Soo;Shin, Byung-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF

Prediction on Flow Stress Curves and Microstructures of 304 Stainless Steel (304 스테인레스강의 고온 유동응력곡선과 미세조직의 예측)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.171-175
    • /
    • 1999
  • the high temperature deformation behavior of 304 stainless steel was characterized by the hot torsion test. Continuous deformation was carried out at the temperature ranges 900-110$0^{\circ}C$ and the strain rate ranges 5x10-2~5/sec. The formulation of the flow stress curves was developed as subtraction form which was based on dynamic softening mechanisms The volume fraction of dynamic recrystallization and the mean grain size could be expressed as a function of deformation variables temperature (T) strain ($\varepsilon$) strain rate ($\varepsilon$) The calculated values of flow stress and mean grain size could be well matched with experimental values.

  • PDF

Recrystallization Controlled Deformation of AISI 4140 (AISI 4140 강재의 재결정 제어변형)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.135-139
    • /
    • 1999
  • The static softening behavior of AISI 4140 could be characterized by the hot torsion test in the temperature ranges of 10$0^{\circ}C$~120$0^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. Deformation efficiency which was based on dynamic materials model was calculated from flow stress curves obtained continuous deformation. Interrupted deformation was performed with 2 pass deformation in the pass strain ranges of 0.25{{{{ epsilon _p}}}} ~3{{{{ epsilon _p}}}} and interrupted time ranges of 0.5~100sec. The dependences of process variables pass strain ({{{{ epsilon _i}}}}) stain rate ({{{{ {. } atop {$\varepsilon$ } }}}}) temperature (T) and interpass time ({{{{ {t }_{i } }}}}) on static recrystallization (SRX) and metadynamic recrystallization .(MDRX) could be indicidually predicted from the modified Avrami's equations. Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. Controlled multipass deformations were performed using deformation efficiency static and metadynamic recrystallization of AISI 4140.

  • PDF

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

Characterization of Chitinase in Oak Tissues and Changes in Its Activity Related to Water Stress and Inoculation with Hypoxylon atropunctatum

  • Chun, Se-Chul;Fenn, Patrick;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.144-151
    • /
    • 1999
  • Chitinase activities from Shumard oak tissues were determined to study changes in chitinase activities related to water stress. The enzyme extracted in sodium acetate buffer (0.1M, pH 4.5) was assayed by a colorimetric method. In addition, the fungal hyphae of Hypoxylon atropunctatum in xylem tissues of oak were observed through scanning electron microscopy. The enzyme in oak tissues was mainly endochitinase, and optimum pH for enzyme activity was 5. Specific chitinase activities from both of stems held under high relative humidity (ranges of 0.63-1.11 pKatal/$\mu\textrm{g}$ of protein) and stems held under low relative humidity (ranges of 0.41-0.99 pKatal/$\mu\textrm{g}$ of protein) were significantly increased following fungal inoculation with H. atropunctatum. However, there was no significant difference in chitinase activities between tissues held under high and low humidities, which might be due to fungal chitinase. Scanning electron microscopy showed holes in fungal hyphae in the xylem tissues of stems held under high humidity but not in the stems held under ow humidity, suggesting that hyphae might be hydrolyzed by plant hydolases such as chitinase.

  • PDF

Residual Stress Evolution during Leveling of Hot Rolled High Strength Coils and Camber Prediction by Residual Stress Distribution (냉간 성형용 열연 고강도 강판의 교정 중 잔류응력 변화와 절단 후 캠버 발생 예측)

  • Park, K.C.;Ryu, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • In order to investigate the residual stress evolution during the leveling process of hot rolled high strength coils for cold forming, the in-plane residual stress of plate sampled at SPM, rough leveler and finish leveler were measured by cutting method. Residual stress was localized near the edge of plate. As the thickness of plate was increased, the size of residual stress region was expanded. The gradient of residual stress within the plate was reduced during the leveling process. But the residual stress itself was not removed completely within the ranges of tested conditions. The exact camber of cut plate was able to be predicted by the measurement of residual stress distribution after leveling of the plate.