• Title/Summary/Keyword: stress protein

Search Result 2,192, Processing Time 0.037 seconds

Salt-induced Differential Gene Expression in Italian Ryegrass (Lolium multiflorum Lam.) Revealed by Annealing Control Primer Based GeneFishing approach

  • Lee, Ki-Won;Lee, Sang-Hoon;Choi, Gi Jun;Ji, Hee Jung;Hwang, Tae Young;Kim, Won Ho;Rahman, Md. Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.231-236
    • /
    • 2017
  • Salt stress is one of the most limiting factors that reduce plant growth, development and yield. However, identification of salt-inducible genes is an initial step for understanding the adaptive response of plants to salt stress. In this study, we used an annealing control primer (ACP) based GeneFishing technique to identify differentially expressed genes (DEGs) in Italian ryegrass seedlings under salt stress. Ten-day-old seedlings were exposed to 100 mM NaCl for 6 h. Using 60 ACPs, a total 8 up-regulated genes were identified and sequenced. We identified several promising genes encoding alpha-glactosidase b, light harvesting chlorophyll a/b binding protein, metallothionein-like protein 3B-like, translation factor SUI, translation initiation factor eIF1, glyceraldehyde-3-phosphate dehydrogenase 2 and elongation factor 1-alpha. These genes were mostly involved in plant development, signaling, ROS detoxification and salt acclimation. However, this study provides new molecular information of several genes to understand the salt stress response. These genes would be useful for the enhancement of salt stress tolerance in plants.

Anti-inflammatory effect of Lycium barbarum on polarized human intestinal epithelial cells

  • Lee, So-Rok;Hwang, Hye-Jeong;Yoon, Ju-Gyeong;Bae, Eu-Young;Goo, Kyo-Suk;Cho, Sang-Joon;Cho, Jin Ah
    • Nutrition Research and Practice
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Inflammatory Bowel Disease (IBD) has rapidly escalated in Asia (including Korea) due to increasing westernized diet patterns subsequent to industrialization. Factors associated with endoplasmic reticulum (ER) stress are demonstrated to be one of the major causes of IBD. This study was conducted to investigate the effect of Lycium barbarum (L. barbarum) on ER stress. MATERIALS/METHODS: Mouse embryonic fibroblast (MEF) cell line and polarized Caco-2 human intestinal epithelial cells were treated with crude extract of the L. chinense fruit (LF). Paracellular permeability was measured to examine the effect of tight junction (TJ) integrity. The regulatory pathways of ER stress were evaluated in MEF knockout (KO) cell lines by qPCR for interleukin (IL) 6, IL8 and XBP1 spliced form (XBP1s). Immunoglobulin binding protein (BiP), XBP1s and CCAAT/enhancer-binding homologous protein (CHOP) expressions were measured by RT-PCR. Scanning Ion Conductance Microscopy (SICM) at high resolution was applied to observe morphological changes after treatments. RESULTS: Exposure to LF extract strengthened the TJ, both in the presence and absence of inflammation. In polarized Caco-2 pretreated with LF, induction in the expression of proinflammatory marker IL8 was not significant, whereas ER stress marker XBP1s expression was significantly increased. In wild type (wt) MEF cells, IL6, CHOP and XBP1 spliced form were dose-dependently induced when exposed to $12.5-50{\mu}g/mL$ extract. However, absence of XBP1 or $IRE1{\alpha}$ in MEF cells abolished this effect. CONCLUSION: Results of this study show that LF treatment enhances the barrier function and reduces inflammation and ER stress in an $IRE1{\alpha}$-XBP1-dependent manner. These results suggest the preventive effect of LF on healthy intestine, and the possibility of reducing the degree of inflammatory symptoms in IBD patients.

Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress

  • Kim, So Wun;Gupta, Ravi;Min, Cheol Woo;Lee, Seo Hyun;Cheon, Ye Eun;Meng, Qing Feng;Jang, Jeong Woo;Hong, Chi Eun;Lee, Ji Yoon;Jo, Ick Hyun;Kim, Sun Tae
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.143-153
    • /
    • 2019
  • Background: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above $25^{\circ}C$. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results: The results showed a reduction in photosynthetic efficiency on heat treatment ($35^{\circ}C$) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

Protecting Effects by Rooibos Tea against Immobilization Stress-induced Cellular Damage in Rat (흰 쥐의 고정화 스트레스에 대한 루이보스티의 방어 효과)

  • Hong, Seong-Gil;Seo, Won-Sang;Jung, Ho-Kwon;Kang, Sang-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1222-1228
    • /
    • 1998
  • Stress will induce various changes in human metabolism. The remarkable phenomenon of these changes is increased energy metabolism that can induce many reactive oxygen species (ROS) production. ROS can peroxidize cellular macromolecules including lipid and protein. The object of this study was to investigate that stress may induce cellular damage by producing ROS and that Rooibos tea can protect cells against reactive oxygen species by immobilization stress in SD rat. The stress group significantly increased in 5-hydroxyindole acetic acid (5-HIAA), one of the stress hormone. Rooibos tea treatment had no effects on 5-HIAA contents, but body weight of Rooibos tea treated rat more increased than that of only the stress group. It was suggested that Rooibos tea colud not affect stress response itself, but protect against the another mechanism. We thought that the oxidative damage was caused by increased energy metabolism. Protein degradation level and lipid peroxide formation on index of oxidative damage significantly increased in the stress group. But the stress-induced activity change could not be observed in antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase. But the catalase activity of the brain significantly was inhibited by the stress. From these results, it was suggested that the immobilization stress induce the brain oxidative damage. However the oxidative damage was inhibited by feeding Rooibos tea containing various antioxidants, such as polyphenol, flavonoid and so on. Therefore, Rooibos tea have the protective effects against the stress caused by the ROS mediated cellular damage.

  • PDF

Changes in Antioxidant Enzyme Activities of Two Contrasting Ecotypes of Arundinella hirta to Drought Stress

  • Chang Woo Min;Yun-Hee Kim;Byung-Hyun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.67-74
    • /
    • 2023
  • To understand antioxidant enzyme response of two contrasting Arundinella hirta ecotypes to drought stress, drought-tolerant Youngduk and drought-sensitive Jinju-1, were comparatively analyzed changes in the enzymatic activities of peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR). Two ecotypes, drought-tolerant Youngduk and drought-sensitive Jinju-1 were subjected to drought stress by withholding water for 12 days. ROS accumulation level and electrolytic leakage were significantly increased in both A. hirta ecotypes by drought stress treatment but less in Youngduk than Jinju-1. The RWC significantly decreased in both the drought stress-treated ecotypes as compared to control, but less in Youngduk than Jinju-1. Soluble sugar and protein content were increased more in drought stress-treated Youngduk as compared to Jinju-1. The activities of antioxidant enzymes such as SOD, CAT, POD, APX, and GR increased significantly in both the drought stress-treated ecotypes Youngduk and Jinju-1 as compared to control. The increase in antioxidant enzyme activity level was more prominent in drought stress-treated Youngduk as compared to Jinju-1. Taken together, these results suggest that Youngduk was more tolerant to drought stress than Jinju-1, and seem to indicate that tolerance of A. hirta to drought stress is associated with increased activity of antioxidant enzymes.

Ferulate, an Active Component of Wheat Germ, Ameliorates Oxidative Stress-Induced PTK/PTP Imbalance and PP2A Inactivation

  • Koh, Eun Mi;Lee, Eun Kyeong;Song, Chi Hun;Song, Jeongah;Chung, Hae Young;Chae, Chang Hoon;Jung, Kyung Jin
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.333-341
    • /
    • 2018
  • Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B $(NF-{\kappa}B)$ activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote $NF-{\kappa}B$ activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and $NF-{\kappa}B$ activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with $NF-{\kappa}B$ activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.

Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells (설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과)

  • Jo, Nam-Eun;Song, Young-soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.265-270
    • /
    • 2019
  • Growing evidence suggests that mediating apoptotic cell death of ER stress plays an important role in pathological development of neurodegenerative diseases including Alzheimer's disease. The ethanol extract of Rodiola sacra (ERS) investigates whether ER stress protects neuroinvasive neuro-2A cells from homocysteine (Hcy) cell death and ER stress. In neuronal cells, Hcy markedly decreased the viability of the cells and induced the death of Annexin V-positive cells as confirmed by MTT assay. The Hcy cell viability and apoptotic loss pretreated with ERS were attenuated, and Hcy showed stress in the expression of C / EBP homologous protein, 78-kDa glucose regulatory protein and the junction of X-box binding protein-1 (xbp1) mRNA. ESR decreased Hcy-induced mRNA binding, GRP78 and CHOP cells induced Hcy-induced ER stress and apoptosis, and Western blotting revealed expression of heme oxygenase-1 and HO-1 enzyme activity Inhibition is indicative of therapeutic value for neurodegenerative diseases such as decreased cell death by hemin.

The Effect of Soil Amended with β-glucan under Drought Stress in Ipomoea batatas L. (𝛽-glucan 토양혼합에 따른 고구마의 가뭄피해 저감 효과 )

  • Jung-Ho Shin;Hyun-Sung Kim;Gwan-Ju Seong;Won Park;Sung-Ju Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.64-72
    • /
    • 2023
  • Biopolymer is a versatile material used in food processing, medicine, construction, and soil reinforcement. 𝛽-glucan is one of the biopolymers that improves the soil water content and ion adsorption in a drought or toxic metal contaminated land for plant survival. We analyzed drought stress damage reduction in sweet potatoes (Ipomoea batatas L. cv. Sodammi) by measuring the growth and major protein expression and activity under 𝛽-glucan soil amendment. The result showed that sweet potato leaf length and width were not affected by drought stress for 14 days, but sweet potatoes grown in 𝛽-glucan-amended soil showed an effect in preventing wilting caused by drought in phenotypic changes. Under drought stress, sweet potato leaves did not show any changes in electrolyte leakage, but the relative water content was higher in sweet potatoes grown in 𝛽-glucan-amended soil than in normal soil. 𝛽-glucan soil amendment increased the expression of plasma membrane (PM) H+-ATPase, but it decreased the aquaporin PIP2 (plasma membrane intrinsic protein 2) in sweet potatoes under drought stress. Moreover, water maintenance affected the PM H+-ATPase activity, which contributed to tolerance under drought stress. These results indicate that 𝛽-glucan soil amendment improves the soil water content during drought and affects the water supply in sweet potatoes. Consequently, 𝛽-glucan is a potential material for maintaining soil water contents, and analysis of the major PM proteins is one of the indicators for evaluating the biopolymer effect on plant survival under drought stress.

Cloning and Characterization of Ribosome-associated Membrane Protein 4 (RAMP4) gene in silkworm Bombyx mori

  • Yao Qin;Hu Zhigang;Xu Jiaping;Chen Keping
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.125-129
    • /
    • 2005
  • Ribosome-associated membrane protein 4 (RAMP4) is a membrane protein that exposes its N-terminal hydrophilic portion on the cytoplasmic side and spans the membrane close to the C-terminal end. RAMP4 has previously been reported to belong to the set of proteins that remains associated with membrane-bound ribosomes, and controls the glycosylation of major histocompatbility complex class II-associated invariant chain. RAMP4 also may be relative to the stabilization of membrane proteins in response to stress, with other components of translocon, and molecular chaperons in ER. Application of 5'-RACE technique with specially designed primer, we cloned a 715 bp cDNA fragment which contains a 195 bp ORF, termed RAMP4. The deduced protein has 64 amino acid residues and contains a putative transmembrane-spanning domain at the COOH terminus.