• Title/Summary/Keyword: stress propagation

Search Result 1,106, Processing Time 0.027 seconds

Numerical Analysis and Experimental Verification of Relaxation and Redistribution of Welding Residual Stresses (용접잔류응력의 이완과 재분포 해석 및 실험적 검증)

  • Song, Ha-Cheol;Jo, Young-Chun;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.84-90
    • /
    • 2004
  • For the precise assessment of the effect of welding residual stresses on structural strength and fatigue crack growth behavior, new FE analysis algorithms for the estimation of residual stress relaxation due to external load and redistribution due to fatigue crack propagation were proposed in this paper. Initial welding residual stress field was obtained by thermal elasto-plastic analysis considering temperature dependent material properties, and the amount of residual stress relaxation and redistribution were assessed by subsequent elasto-plastic analysis In the analysis of fatigue crack propagation, the applied SIF(Stress Intensity Factor) range was evaluated by $\frac{1}{4}$-point displacement extrapolation method, and the effect of welding residual stresses on crack propagation was considered by introducing the effective SIF concept. The test results of crack propagations were compared with the predicted data obtained by the analysis.

A Study on Fatigue Crack Propagation Analysis and Fatigue Strength Evaluation for Bulk Carrier (살물선의 피로균열 전파해석과 피로강도 평가에 대한 연구)

  • 엄동석;김충희
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.112-124
    • /
    • 1993
  • It has been reported that fatigue damage sometimes occurred at the stress concentrated and dynamic loaded structural members of bulk carrier. In this paper, studies on fatigue strength of hull structures are reviewed, and the program for evaluating fatigue strength is developed. And the fatigue crack initiation and propagation on the end part of cargo hold frame of bulk carrier were calculated by FEM stress analysis and the fatigue strength evaluation program. These method can be applied not only to the crack initiation life but also to crack propagation life for the hull structural members at the hull design stage and be effective as the guideline to prevent the crack initiation or to estimate the fatigue strength for repairing of the fatigue damaged structures of real ships.

  • PDF

Numerical Analysis of Residual Stress Redistribution due to Fatigue Crack Propagation of Weld Zone (용접부의 균열진전에 따른 잔류응력 재분포 해석)

  • 이동형;구병춘
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.225-231
    • /
    • 2002
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and redistribution due to fatigue crack propagation of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the redistribution of residual stresses due to fatigue crack propagation of weld zone.

  • PDF

Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder (자긴가공된 두꺼운 실린더의 피로균열 전파수명평가)

  • Lee, Song-In;Kim, Jin-Yong;Jeong, Se-Hui;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

Analysis and Propagation Behavior of Dissimilar Friction Welded Materials for Fatigue Crack in around Interface (이종마찰압접 계면근방에서의 피로균열의 전파거동 및 해석)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.140-145
    • /
    • 1998
  • In this study, analysis for fatigue crack propagation behavior of interface and aroud interface under rotary bending stress. Though K values are nearly the same in around interface by BEM 2-D, fatigue crack propagated H.A.Z. Around Interface crack propagation speed is m=0.678 in H.A.Z by Paris' law. In this case(friction welded materials: STS304, SM15C), fatigue crack growth is considered SM15C metal microstructure and elastic flow from this result. Result is more metal microstructute dependence than stress dependence by analysis (BEM 3-D, BEM 2-D) and fatigue crack propagation

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • 박경동;정재욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.58-64
    • /
    • 2004
  • The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, and -10$0^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. There is a difference between shot peened specimen and unpeened specimen. Fatigue crack growth rate of shot peened specimen was lower than that of unpeened specimen. Shot peening is improve the resistance of crack growth by fatigue that make a compressive residual stress on surface. That is the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation. Temperature goes down, fatigue crack growth rate decreased.

A Study on the Prediction of Fatigue Crack Growth Rate in Stainless Steel Weldments (스테인레스강 용접부의 피로균열 전파속도 예측에 관한 연구)

  • 이용복
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.68-78
    • /
    • 1998
  • Welding structure contains residual stress due to thermal-plastic strain during welding process, and its magnitude and distribution depend on welding conditions. Cracks initiate from various defects of the weldment, propagate and lead to final fracture, The crack initiation and propagation processes are affected by the magnitude and distribution. Therefore, the magnitude and distribution of weldment residual stress should be considered for safety design and service of welding structures. Also it is very important that more accurate assessment method of fatigue crack growth must take into account the redistributing the residual stress quantitively. because the residual stress in weldment has characteristics of its redistribution with loading magnitude, number of cycles and fatigue crack propagation. In this study fatigue crack behavior of STS-304 weldment was investigated during crack propagation into tensile residual stress region or compressive residual stress region. Crack growth rates were predicted and compared with experimental results.

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • Jung, Jae-Wook;Park, Keyoung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

A Study on Fatigue Behavior Considering Effects of Redistributing Tensile Residual Stress and Crack Closure in SS330 Weldment (SS330 용접재에서 재분포 잔류응력 및 균열닫힘영향을 고려한 파로거동에 관한 연구)

  • Lee, Yong-Bok;Jeong, Jin-Seong;Jo, Nam-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2234-2245
    • /
    • 1996
  • In this study residual stress in weldment was considered about the effect on the fatigue propagation and about the effect of redistribution of residual stress. Then, fatigue tests were conducted by the center notched specimens machined with welded plate. The residual stress and its redistribution after the crack growth were measured by the magnetizing stress indicator and hole-drilling method. Fatigue crack propagation was estimated by the specimens having residual stress redistributed after the cracks growth and having the effects of crack closure. Crack growth rates were predicted and compared with experimental results. It had been found that the predicted crack propagation rates have a good agreement with experimental results when the redistribution of residual stress was considerd.