• 제목/요약/키워드: stress of the principal

검색결과 598건 처리시간 0.025초

Eigenanalysis법(法)에 의(依)한 현지응력(現地應力) 측정치(測定値)의 해석(解析) (The Interpretation of Stress Measured Results by Eigenanalysis)

  • 임한욱;김웅수
    • 산업기술연구
    • /
    • 제2권
    • /
    • pp.53-60
    • /
    • 1982
  • A strain gage relief technique was used to determine the magnitude and directions of a virgin principal stresses, but the values measured in the same borehole are always not consistent. This paper has shown the use of the eigen analysis to achieve precise and reliable principal stress from measured values. The best fit stress ellipsoid to the data has been obtained through consideration of direction cosine of each principal stress.

  • PDF

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.

다축응력상태에서의 304 스테인리스강의 고온 파괴수명에 관한 연구 (High temperature rupture lifetime of 304 stainless steel under multiaxial stress states)

  • 김호경;정강;정진성
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.595-602
    • /
    • 1998
  • Specimens of 304 stainless steel were tested to failure at elevated temperatures under multiaxial stress states, uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times are compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the principal facet stress gives the best correlation for the material investigated, and this parameter can predict creep life data under multiaxial stress states with rupture data obtained with specimens under uniaxial stresses. The results also suggest that grain boundary cavitation, coupled with localized deformation processes such as grain boudary sliding, controls the lifetimes of the specimens.

Stress interactions between two asymmetric noncircular tunnels

  • La, You-Sung;Kim, Bumjoo;Jang, Yeon-Soo;Choi, Won-Hyuk
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.869-877
    • /
    • 2018
  • The continually growing demand for underground space in dense urban cities is also driving the demand for underground highways. Building the underground highway tunnel, however, can involve complex design and construction considerations, particularly when there exists divergence or convergence in the tunnel. In this study, interaction between two asymmetric noncircular tunnels-that is, a larger main tunnel and a smaller tunnel diverging from the main tunnel, was investigated by examining the distributions of the principal stresses and the strength/stress ratio for varying geometric conditions between the two tunnels depending on diverging conditions using both numerical analysis and scale model test. The results of numerical analysis indicated that for the $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ diverging directions, the major principal stress showed an initial gradual decrease and then a little steeper increase with the increased distance from the left main tunnel, except for $90^{\circ}$ where a continuous drop occurred, whereas the minor principal stress exhibited an opposite trend with the major principal stresses. The strength/stress ratio showed generally a bell-shaped but little skewed to left distribution over the distance increased from the left larger tunnel, similarly to the variation of the minor principal stress. For the inter-tunnel distance less than 0.5D, the lowest strength/stress ratio values were shown to be below 1.0 for all diverging directions ($0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$). The failure patterns observed from the model test were found to be reasonably consistent with the results of numerical analysis.

보육 시설장의 스트레스와 어려움에 관한 탐색적 연구 (An Explorative Study for the Stress and Difficulty of the Principal on the Day-Care Centers)

  • 김수연;나중혜
    • 한국생활과학회지
    • /
    • 제17권1호
    • /
    • pp.45-56
    • /
    • 2008
  • The purpose of this study was to provide data for the stress and difficulty of the principal on the day-care centers. For this purpose, we had interviewed with 154 principals on the day-care centers in Daejeon and Chungcheong-do. The principals reported that they had stress about administration of day-care center normally. Their stress was different by the type of the center, the number of the class and their sex. They had difficulties in administrating teachers, managing the center, relating with the authorized officials, and finances. For the governing their center expertly, they needed to improve the quality of teachers, to amplify the financial support, and so on.

탄산음료용 PET병의 바닥면 크랙방지를 위한 Petaloid 디자인 (A Study on the Bottom Design of Petaloid Carbonated PET Bottle to Prevent Bottom Crack)

  • 신희철;류민영;김용환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.154-157
    • /
    • 2001
  • Through this study we investigated the causes of bottom crack. We then redesigned petaloid bottom to prevent bottom crack. We examined the material property variations according to the stretch ratio of PET and analyzed stretches of bottom in blowing processes. We also performed crack test to observe a crack phenomena. The effective stress and maximum principal stress were examined by computer simulation. We concluded that the bottom crack occurs because of not only insufficient strength of material due to the insufficient stretch of PET but also coarse design of petaloid shape. The highest maximum principal stress occurred at valley in petaloid bottom of bottle and this strongly affected the crack in bottom. We redesigned petaloid shape to minimize maximum principal stress, and this result in increasing the crack resistance.

  • PDF

TWO DIMENSIONAL STUDY OF HYDRAULIC FRACTURING CRITERIA IN COHESIVE SOILS

  • 유택영사
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 연약지반처리위원회 봄 학술발표회 논문집 연약지반처리
    • /
    • pp.3-12
    • /
    • 1994
  • Based on the shear failure mechanism, hydraulic fracturing criteria are extended to three dimensional stress state. According to the situation of the directions of borehole and major principal stress axes, three equations can be derived for three dimensional hydraulic fracturing problems. By comparing these equations, a single criterion is selected for hydraulic fracturing pressure in cohesive soils. The criterion is a function of maximum principal stress, minimum principal stress and soil parameters in UU conditions. The equation indicates that with any increase in maximim principal stress, hydraulic fracturing pressure decreases. In order to prove the integrity of the criteria, laboratory tests are performed on compacted cubical specimens using true a triaxial apparatus. The shape and direction of fractures are determined by injecting colored water after fracture initiation. It is found that the direction of fractures are perpendicular to the o1 plane.

  • PDF

부분 관통 구멍이 있는 인장판의 주응력 분포 차이 해석 (Analysis of Principal Stress Distribution Difference of Tensile Plate with Partial Through-hole)

  • 박상현;김영철;김명수;백태현
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권2호
    • /
    • pp.437-444
    • /
    • 2017
  • 기계구조물 부재의 단면에 구멍이나 또는 단면이 급격히 변화할 경우, 불연속 부분 주위에서 응력집중이 일어나며 파손이 발생하는 주요 원인이 된다. 그 이유는 부재에 작용하는 평균 응력보다 응력집중 부분에서 훨씬 큰 응력이 작용하기 때문이다. 본 논문에서는 시편의 부분 관통 구멍 주위에서 응력해석을 수행하여 구멍을 통과하는 선상의 주응력 차 값을 구하였다. 광탄성에서 최대주응력과 최소주응력의 차이는 등색프린지 차수와 재료의 프린지 상수를 곱한 값을 빛이 통과한 거리 즉, 시편의 두께로 나눈 값과 같다. 즉, 주응력의 차이는 광탄성 프린지 차수와 비례관계가 있으므로 유한요소해석에 의한 주응력 차이의 분포를 광탄성 실험결과에 비교할 수 있다. 유한요소 범용 소프트웨어인 ANSYS Workbench를 이용하였으며 유한요소법으로 해석된 값을 광탄성 실험으로부터 측정된 값과 비교한 결과 유사한 결과를 얻었다. 이로서 유한요소해석 결과는 실험결과와의 비교를 통해 타당성이 입증될 수 있었다. 또한 구멍깊이 변화에 따라 나타나는 응력분포를 사용하여 응력집중계수를 구하였다. 구멍깊이가 증가할수록 응력집중계수는 증가함을 나타냈다.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

Investigation of Bottom Cracks in the Carbonated Poly(ethylene terephthalate) Bottle

  • Pae, You-Lee;Nah, Chang-Woon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제38권4호
    • /
    • pp.354-362
    • /
    • 2003
  • The use of a petaloid design for the bottom of carbonated poly(ethylene terephthalate)(PET) bottles is widely spread. This study investigated the causes of bottom cracks. The tensile yield stress variations of PET according to the crystallinity and stretch ratio were examined, then the stretch ratio and strength in the bottom area of a blown bottle were analyzed. A crack test was also performed to observe the cracking phenomena. The distribution of the effective stress and maximum principal stress were both examined using computer simulation to seek the influence of the bottom design on crack. It was concluded that the bottom cracks occurred because of inadequate material strength due to the insufficient stretching of PET, plus the coarse design of a petaloid bottom. The stretch ratio at the bottom during bottle blowing should be higher than the strain hardening point of PET to produce enhanced mechanical strength. The cracks in the bottom of the PET bottles occurred through crazing below the yield stress. The maximum principal stress was higher in the valleys of the petaloid bottom than in the rest bottom area, and the maximum principal stress had a strong effect on the cracks.