• Title/Summary/Keyword: stress migration

Search Result 142, Processing Time 0.025 seconds

Enhancement of Cell Migration by Corticotropin-Releasing Hormone (CRH) in Human Gastric Cancer Cell Line, MKN-28 (Corticotropin-Releasing Hormone (CRH)에 의한 인간 위암 세포(MKN-28)의 Migration 증가)

  • Cheon, Soyoung;Cho, Daeho
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.244-249
    • /
    • 2004
  • Background: Corticotropin-Releasing Hormone (CRH), an important regulator of stress response, has a potent immunoregulatory effect with the ability to promote the growth of various cancer through CRH receptor type 1 under stress. Although the metastasized cancers through cell migration are more aggressive than the primary cancers, little is known about the effect of CRH on cell migration. Gastric cancer is prone to metastasize to other tissues and it is reported that gastric cancer is response to various stresses such as oxidative stress. Herein, we studied the relationship between CRH and gastric cancer cell migration. Methods: We used gastric cancer cell line, MKN-28 and tested the CRH receptor type 1 expression on MKN-28 by RT-PCR. To examine the change in the ability of migration by CRH in MKN-28, cells were incubated with CRH and then migration ability was measured using a cell migration assay. Results: We confirmed that CRH receptor type 1 was expressed in MKN-28 and HaCaT cells. The migration ability of MKN-28 cells was increased by CRH in a time-, dose- dependent manner. Conclusion: These data suggest that CRH increases migration ability in gastric cancer cell line and that CRH may be a critical regulator in the metastasis of gastric cancer cell.

Compressive stress induces collective migration through cytoskeletal remodelling in nasal polyp epithelium

  • Ji Myung Chung;Seong Gyu Lee;Jae-Sung Nam;Jong-Gyun Ha;Ji Hye Chung;Hyung-Ju Cho;Chang-Hoon Kim;Sang-Nam Lee;Hyungsuk Lee;Joo-Heon Yoon
    • Journal of Rhinology
    • /
    • v.59 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • Background: Nasal polyps in the nasal cavity and mucous discharge inside the maxillary sinus exhibit compressive stress on the nasal mucosal epithelium. However, there have been only a few studies on how compressive stress impacts the human nasal mucosal epithelium. Methodology: We investigated the effect of compressive stress on collective migration, junctional proteins, transepithelial electrical resistance, epithelial permeability, and gene expression in well-differentiated normal human nasal epithelial (NHNE) cells and human nasal polyp epithelial (HNPE) cells. Results: NHNE cells barely showed collective migration at compressive stress up to 150 mmH20. However, HNPE cells showed much greater degree of collective migration at a lower compressive stress of 100 mmH20. The cell migration of HNPE cells subjected to 100 mmH2O compression was significantly decreased at day 3 and was recovered to the status prior to the compressive stress by day 7, indicating that HNPE cells are relatively more sensitive to mechanical pressure than NHNE cells. Compressive stress also increased transepithelial electrical resistance and decreased epithelial permeability, indicating that the compressive stress disturbed the structural organization rather than physical interactions between cells. In addition, we found that compressive stress induced gene expressions relevant to airway inflammation and tissue remodelling in HNPE cells. Conclusion: Taken together, these findings demonstrate that compressive stress on nasal polyp epithelium is capable of inducing collective migration and induce increased expression of genes related to airway inflammation, innate immunity, and polyp remodelling, even in the absence of inflammatory mediators.

A Study on the Marital Adjustment Among Marriage Migration Females (결혼이주여성의 결혼적응에 관한 연구)

  • Kim, Hyoun-Suk
    • Korean Journal of Social Welfare
    • /
    • v.62 no.2
    • /
    • pp.135-159
    • /
    • 2010
  • This study is thing about marital adjustment of marriage migration females. This research inspected relational and influential factors that has consequences for the marital adjustment. The subjects of research are 172 marriage migration females lived in Busan. Data were analyzed by MANOVA, Multiple Regression. The results are following: First, this study found that marriage migration female's marital satisfaction are significantly influenced by spousal support, family stress, level of communication. And marriage migration female's divorce intention are significantly influenced by children number, family stress. And marriage migration female's couple loving are influenced by length of marriage, spousal support, level of communication. Second, family stress is the most powerful factor to predict marital adjustment. Therefore the lower family stress is the better marital adjustment. And through this study I found that marital adjustment is more important family stress than acculturative stress.

  • PDF

EFFECTS OF UNIFORM SHEAR STRESS ON THE MIGRATION OF VASCULAR ENDOTHELIAL CELL (균일한 전단응력에 의한 혈관내피세포의 운동성 변화)

  • Shin, Jennifer H.;Song, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1404-1408
    • /
    • 2008
  • The migration and proliferation of vascular endothelial cells (VEC), which play an important role in vascular remodeling, are known to be regulated by hemodynamic forces in the blood vessels. When shear stresses of 2, 6, 15 dynes/$cm^2$ are applied on mouse micro-VEC in vitro, cells surprisingly migrate against the flow direction at all conditions. While higher flow rate imposes more resistance against the cells, reducing their migration speed, the horizontal component of the velocity parallel to the flow increases with the flow rate, indicating the higher alignment of cells in the direction parallel to the flow at a higher shear stress. In addition, cells exhibit substrate stiffness and calcium dependent migration behavior, which can be explained by polarized remodeling in the mechanosensitive pathway under shear stress.

  • PDF

Acculturative Stress and Marital Adjustment among Marriage Migration Females: Focusing on the Mediating and Moderating Effects of Ego-Resilience (결혼이주여성의 문화적응스트레스와 부부 적응: 자아탄력성의 매개효과 및 조절효과를 중심으로)

  • Kim, Hyun-Suk;Kim, Hee-Jae;Choi, Song-Sik
    • Journal of Family Resource Management and Policy Review
    • /
    • v.14 no.2
    • /
    • pp.153-176
    • /
    • 2010
  • The purpose of this study was to investigate the relationship between marriage migration females' acculturative stress and marital adjustment, especially the mediating and moderating effects of ego-resilience. The structural equation models were tested by setting marriage migration females' acculturative stress as a prediction variable, their marital adjustment as an outcome variable and their ego-resilience as mediator and moderator variables. The sample consisted of 172 marriage migration females from Busan. I analyzed the data using correlation analysis in order to discover the correlation coefficient of those variables among acculturative stress, ego-resilience and marital adjustment. I used the structural equation model (SEM) for investigating the relationship among acculturative stress, ego-resilience and marital adjustment and for investigating the mediating effects of ego-resilience. I also used multiple group analysis and two way ANOVA to investigate the moderating effects of ego-resilience. The results of structural equation modeling were as follows: first, it was proved that ego-resilience was exerted as a mediating variable, because acculturative stress appeared to affect marital adjustment in relation to ego-resilience. Therefore, marital adjustment was evident when ego-resilience was low. Second, it was proved that ego-resilience was exerted as a moderating variable, because those with low ego-resilience experienced high acculturative stress and low marital adjustment, and those with high ego-resilience experienced low acculturative stress and high marital adjustment. Such findings point out the importance of considering personal characteristics, like ego-resilience, in the relationship between acculturative stress and marital adjustment.

  • PDF

mTOR Signal Transduction Pathways Contribute to TN-C FNIII A1 Overexpression by Mechanical Stress in Osteosarcoma Cells

  • Zheng, Lianhe;Zhang, Dianzhong;Zhang, Yunfei;Wen, Yanhua;Wang, Yucai
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migration. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.

Inhibition of Cell Migration by Corticotropin-Releasing Hormone (CRH) in Human Natural Killer Cell Line, NK-92MI (Corticotropin-Releasing Hormone (CRH)에 의한 인간 자연 살해 세포(NK-92MI)의 Migration 억제)

  • Cheon, So-Young;Bang, Sa-Ik;Cho, Dae-Ho
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.247-251
    • /
    • 2005
  • Background: Natural killer (NK) cells are CD3 (-) CD14 (-) CD56 (+) lymphocytes. They play an important role in the body's innate immune response. They can induce spontaneous killing of cancer cells or virus-infected cells via the Fas/Fas ligand or the granzyme/perforin systems. The corticotropin-releasing hormone (CRH) is an important regulator for the body's stress response. It promotes proliferation and migration of various cancer cells through the CRH type 1 receptor under stress, and also inhibits NK or T cell activity. However, the relationship of CRH and NK cell migration to the target has not been confirmed. Herein, we study the effect of CRH on NK cell migration. Methods: We used the human NK cell line, NK-92MI, and tested the expression of CRH receptor type 1 on NK-92MI by RT-PCR. This was to examine the effect of CRH on tumor and NK cell migration, thus NK cells (NK-92MI) were incubated with or without CRH and then each CRH treated cell's migration ability compared to that of the CRH untreated group. Results: We confirmed that CRH receptor type 1 is expressed in NK-92MI. CRH can decrease NK cell migration in a time-/dose-dependent manner. Conclusion: These data suggest CRH can inhibit NK cell migration to target cells.

Numeric simulation of near-surface moisture migration and stress development in concrete exposed to fire

  • Consolazio, Gary R.;Chung, Jae H.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 2004
  • A methodology is presented for computing stresses in structural concrete members exposed to fire. Coupled heat and moisture migration simulations are used to establish temperature, pore pressure, and liquid-saturation state variables within near-surface zones of heated concrete members. Particular attention is placed on the use of coupled heat and multiphase fluid flow simulations to study phenomena such as moisture-clogging. Once the state variables are determined, a procedure for combining the effects of thermal dilation, mechanical loads, pore pressure, and boundary conditions is proposed and demonstrated. Combined stresses are computed for varying displacement boundary conditions using data obtained from coupled heat and moisture flow simulations. These stresses are then compared to stresses computed from thermal analyses in which moisture effects are omitted. The results demonstrate that moisture migration has a significant influence on the development of thermal stresses.

Improvement of Migration Lifetime by Dual-sized Grain Structure in 1% Si-Al Metal Line (이중 결정립 구조 1%Si-Al 금속선에 의한 Migration 수명의 개선)

  • 김영철;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.6
    • /
    • pp.1-7
    • /
    • 1993
  • After the 1%S-Al metal is deposited, a thin oxide is formed thereon. Then, a single charged Argon(Ar$^{+}$) is ion implanted into the oxide layer, thereby causing the metal grain in the upper surface of the metal layer to become amorphous. Consequently, the grain size will be reduced and the rough surface of the metal layer flattened. However, the remainder of the metal layer beneath the upper surface thereof will still exhibit large grain size and low resistance, because the Argon ion is only implanted to characterized by a dual-sized grain structure which served to reduce interlayer stress, thereby decreasing the rate of stress migration, and to lower the resistivity of the metal line, thereby enhancing the electromigration characteristic thereof. Experiments have shown that the metal line exhibits a metal migration rate which is approximately 700% less than the control group and a standard deviation which is approximately 200% less than these group.p.

  • PDF

MOLECULAR DYNAMICS SIMULATION OF STRESS INDUCED GRAIN BOUNDARY MIGRATION DURING NANOINDENTATION EXPERIMENTS (나노압흔시 응력에 따른 결정립계거동의 분자역학모사)

  • Yoon, Jang-Hyeok;Kim, Seong-Jin;Chang, Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.39-39
    • /
    • 2003
  • Molecular dynamics (MD) simulation was performed to study the stress induced grain boundary migration caused by the interaction of dislocations with a gain boundary. The simulation was carried out in a Ni block (295020 atoms) with a ∑ = 5 (210) grain boundary and an embedded atom potential for Ni was used for the MD calculation. Stress was provided by indenting a diamond indenter and the interaction between Ni surface and diamond indenter was assumed to have a fully repulsive force to emulate a faction free surface. Results showed that the indentation nucleated perfect dislocations and the dislocations produced stacking faults in the form of a parallelepiped tube. The parallelepiped tube consisted of two pairs of parallel dislocations with Shockley partials and was produced successively during the penetration of the indenter. The dislocations propagated along the parallelepiped slip planes and fully merged onto the ∑ = 5 (210) grain boundary without emitting a dislocation on the other grain. The interaction of the dislocations with the grain boundary induced the migration of the grain boundary plane in the direction normal to the boundary plane and the migration continued as long as the dislocations merged onto the grain boundary plane. The detailed mechanism of the conservative motion of atoms at the gram boundary was associated with the geometric feature of the ∑ = 5 (210) grain boundary.

  • PDF