• Title/Summary/Keyword: stress intensity

Search Result 2,008, Processing Time 0.03 seconds

Weight Function Theory for Piezoelectric Materials with a Crack (균열을 가진 압전재료에서의 가중함수이론)

  • 손인호;안득만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.208-216
    • /
    • 2003
  • In this paper, a two-dimensional electroelastic analysis is performed on a piezoelectric material with an open crack. The approach of Lekhnitskii's complex potential functions is used in the derivation and Bueckner's weight function theory is extended to piezoelectric materials. The stress intensity factors and the electric displacement intensity factor are calculated by the weight function theory.

Weight Function Theory for Piezoelectric Materials with Crack in Anti-Plane Deformation (균열을 가진 압전재료에 대한 면외 변형에서의 가중함수이론)

  • Son, In-Ho;An, Deuk-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • In this paper, an electroelastic analysis is performed on a piezoelectric material with an open crack in anti-plane deformation. Bueckner’s weight function theory is extended to piezoelectric materials in anti-plane deformation. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT Specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.890-895
    • /
    • 2002
  • Cold expansion method is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Previous research has just been study about residual stress distribution in the hole surrounding. But, The purpose of this study was to improve the understanding of the residual stress effect in hole surrounding as crack growth from another hole. In this paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen using finite element method. It is further shown that tensile stress increases in proportion to cold expansion ratio in the vicinity of crack. It is thought that stress intensity factor increases with cold expansion ratio.

An Acoustic Study of English Sentence Stress and Rhythm Produced by Korean Speakers

  • Kim, Ok-Young
    • Speech Sciences
    • /
    • v.14 no.1
    • /
    • pp.121-135
    • /
    • 2007
  • The purpose of this paper is to examine how Korean speakers realize English stress and rhythm at the sentence level, and investigate what different acoustic characteristics of English sentence stress and rhythm Korean speakers have, compared with those of American English speakers. Stressed words in the sentence were analyzed in terms of duration, fundamental frequency, and intensity of the stressed vowel in the word with neutral stress and with emphatic stress, respectively. According to the results, when the words had emphatic stress, both Koreans' and Americans' F0 and intensity of the stressed vowel were higher than those with neutral stress. Korean speakers of English realized the sentence stress with shorter vowel duration and higher F0 than American English speakers when the words had emphatic stress. The analysis of the timing of the sentence with increased unstressed syllables showed that both Americans and Koreans produced the sentence with longer duration as the number of unstressed syllables increased. However, the duration of unstressed syllables between stressed syllables by Koreans was longer than that by Americans. Americans seemed to produce unstressed syllables between stressed syllables faster than Koreans for regular intervals of stressed syllables. This analysis implies that if there are more unstressed syllables between stressed syllables, Koreans might produce unstressed syllables and the whole sentence with longer duration.

  • PDF

The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio (응력비 변화에 따른 혼합모드 피로균열 전파거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

Mixed Mode Fatigue Crack Propagation Behavior due to The Variation of Stress Ratio (응력비의 변화에 따른 혼합 모드 피로 균열 전파 거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.286-291
    • /
    • 2001
  • Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to $0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

A Study on the Fatigue Test in A5052 Alloy Sheet Under Mixed Mode Loading (혼합모드 하중하의 A5052 합금판재에서의 피로시험에 관한 연구)

  • Gu, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.828-834
    • /
    • 2002
  • In this paper, for the mixed mode fatigue problem, the method of determining testing load was proposed. It is based on the plastic zone size and the limited maximum stress intensity factor by ASTM STANDARD E 647-00. The application method of maximum tangential stress criterion and the stress intensity factor for the finite width specimen was proposed. In the result of applying the method to mixed mode fat gut test for A5052 H34, it obtained the satisfactory experimental results on the stable crack growth.

Fatigue Crack Initiation and Propagation at Notches (노치 에서의 피로 균열 발생 과 전파 에 관한 연구)

  • 이강용;이택성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.141-144
    • /
    • 1984
  • The fatigue limits of crack initiation and propagation on the edge elliptical notched semi-infinite plate under completely reversed fatigue stress are determined theoretically. Assuming that the crack initiation and propagation occur when stress intensity factors of notched plate reach the critical values obtained from critical micro-crack length under plain fatigue limit loading and the threshold stress intensity factory, respectively, the fatigue limits of crack initiation and propagation are obtained. The induced theoretical fatigue limit of crack initiation is expressed in terms of plain fatigue limit, critical micro-crack length and notch shape. The one of crack propagation is in terms of threshold stress intensity factor, plain fatigue limit and notch shape. These theoretical results are showed to be in good agreement of Frost's experimental data.

Local stress field for torsion of a penny-shaped crack in a transversely isotropic functionally graded strip

  • Feng, W.J.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.759-768
    • /
    • 2004
  • The torsion of a penny-shaped crack in a transversely isotropic strip is investigated in this paper. The shear moduli are functionally graded in such a way that the mathematics is tractable. Hankel transform is used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by taking the asymptotic behavior of Bessel function into account. The effects of material property parameters and geometry criterion on the stress intensity factor are investigated. Numerical results show that increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface can suppress crack initiation and growth, and that the stress intensity factor varies little with the increasing of the strip's height.