• 제목/요약/키워드: stress intensity

검색결과 2,000건 처리시간 0.025초

이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구 (Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio)

  • 백운철;황재석
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).

U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수 (Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam)

  • 서보성;이광호
    • 대한기계학회논문집A
    • /
    • 제40권5호
    • /
    • pp.513-523
    • /
    • 2016
  • 단순보와 외팔보의 U-노치 및 균열에 대한 응력집중계수 및 응력확대계수를 유한요소법 및 광탄성실험에 의해 해석하였다. 해석결과를 사용하여 응력집중계수 및 응력확대계수의 추정 그래프를 얻었다. 노치의 응력집중계수해석을 위하여 무차원 노치 길이 H(시편의 높이)/h=1.1~2, 무차원 틈 간격 r(노치선단의 반경)/h=0.1~0.5로 하였다. 여기서 h=H-c, c=노치길이이다. 해석결과 틈 길이가 증가할수록 그리고 틈 간격이 좁아질수록 응력집중계수는 증가 한다. 응력집중계수는 단순보가 외팔보다 더 크게 나타나나, 실제 일정한 하중과 노치길이 및 틈 간격 하에서 최대 응력값은 단순보보다 외팔보에서 크게 발생함을 알 수 있었다. 균열해석을 위하여 무차원 균열길이 a(균열길이)/H=0.2~0.5로 하였다. 균열의 길이가 증가 할수록 무차원 응력확대계수는 증가한다. 일정한 하중과 일정한 균열길이하에 응력확대계수값은 단순보 보다 외팔보에서 크게 발생함을 알 수 있었다.

혼합형 하중항에 있는 판재로 보강된 균열판의 응력세기계수 (Stress intensity factor in cracked plate reinforced with a plate under mixed mode loading)

  • 이강용;김옥환
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.569-578
    • /
    • 1998
  • The mode I and II stress intensity factors have been calculated theoretically for the cracked plate reinforced with a plate by symmetric spot welding under remote mixed mode loading. This is the extension of authors' previous work for the reinforced cracked plate under remote normal stress. Regardless of loading types, the reinforcement effect gets better as one joining spot is closer to the crack tip and the others are closer to the crack surface, and optimum number of the joining spots can be existed. For the present model, the remote loading parallel to crack surface produces the mode I stress intensity factor.

CAUSTICS방법에 의한 응력확대계수 결정 (Determination of the Stress Intensity Factor by the Method of Caustics)

  • 김상철;이억섭;한민구
    • 비파괴검사학회지
    • /
    • 제8권1호
    • /
    • pp.22-29
    • /
    • 1988
  • The optical method of reflected and transmitted caustics has been utilized in mechanics investigations. This relatively new experimental technique has been successfully applied on various fracture analysis such as static and dynamic c rack propagation studies, some elasticity problems and contact stress, etc, In this study, the stress intensity factors in thin polycarbonate specimens, a kind of optically anisotropic material, under Mode I loading condition are estimated by the method of caustics. The values of stress intensity factors obtained from theoretical caustics shape are compared by the experiment. It is confirmed that the two stress intensity factors agree well with Srawley's solution.

  • PDF

고온 크리프 구조물의 장시간 한계응력강도 예측 (Prediction of Long-Term Stress Intensity Limit of High-Temperature Creep Structures)

  • 김우곤;류우석;김현희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.648-653
    • /
    • 2003
  • In order to predict stress intensity limit of high-temperature creep structures, creep work-time equation, defined as $W_ct^P=B$, was used, and the results of the equation were compared with isochronous stress-strain curve (ISSC) ones of ASME BPV NH Code. For this purpose, the creep strain tests with. time variations for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at $593^{\circ}C$. The results of log $W_c$ and log t plots showed a good linear relation up to $10^5$ hr. The constants p, B and stress intensity limit values showed comparatively good agreement to those of ASME NH ISSC. It is believed that the relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data.

  • PDF

경계요소법을 이용한 관통균열의 응력확대계수에 미치는 미소결함의 영향에 관한 연구 (A Study on the Effect of Micro Defect on Stress Intensity Factor of Through-Crack by Boundary Element Method)

  • 성기득;양원호;조명래
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.560-566
    • /
    • 2000
  • Many researchers have dealt with the problems of fracture mechanics. Generally, these researches are concerned with crack in isotropic material without other micro defects. Actual structure, however, may contain micro defects as well as crack in manufacture processing or operation. If it contains mi defects near a crack, some different characteristics will be appear in fracture behaviors of the crack. This study examines the effect of the micro defect on stress intensity factor of center slant crack rectangular plate subjected to uniform uniaxial tensile stress. In this study, boundary element method(BEM) is used for analysis in stress intensity factor(SIF).

상반일 등고선 적분법을 이용한 이종재 접합계면 균열의 응력강도계수 결정 (Determination of Stress Intensity Factors for Interface Cracks in Dissimilar Materials Using the RWCIM)

  • 조상봉;정휘원;김진광
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.180-185
    • /
    • 2000
  • An interface V-notched crack problem can be formulated as a eigenvalue problem. there are the eigenvalues which give stress singularities at the V-notched crack tip. The RWCIM is a method of calculating the eigenvector coefficients associated with eigenvalues for a V-notched crack problem. Obtaining the stress intensity factors for an interface crack in dissimilar materials is examined by the RWCIM. The results of stress intensity factors for an interface crack are compared with those of the displacement extrapolation method by the BEM

  • PDF

Stress Intensity Factor for the Cracked Plate Reinforce with a Plate by Seam Welding

  • Kim, O.W.;Park, S.D.;Lee, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.18-22
    • /
    • 2001
  • The stress intensity factor has been calculated theoretically for the cracked plate subjected to remote normal stress and reinforced with a plate by symmetric seam welding. The singular integral equation was derived based on displacement compatibility condition between the cracked plate and the reinforcement plate, and solved by means of Erdogan and Gupta's method. The results from the derived equation for stress intensity factor were compared with FEM solutions and seems to be reasonable. The reinforcement effect gets better as welding line is closer to the crack and the stiffness ratio of the cracked plate and the reinforcement plate becomes larger.

  • PDF

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • 허성필;양원호;정기현
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

이방성재료 접합 띠판에 대한 면외 동적계면균열 (Mode III Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Anti-Plane Deformation)

  • 박재완;최성렬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.111-116
    • /
    • 2000
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strip under out-of-plane clamped displacements is analyzed. The asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. The dynamic energy release rate is also obtained as a form related to the stress intensity factor.

  • PDF