• 제목/요약/키워드: stress distribution function

검색결과 414건 처리시간 0.025초

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 (Analysis of Bridging Stress Effect of Polycrystalline aluminas Using Double Cantilever Beam Method)

  • 손기선;이선학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.583-589
    • /
    • 1996
  • In this study a new analytical model which can describe the relationship between the bridging stress and microstructure has beenproposed in order to investigate the microstructural effect on the R-curve behavior in polycrystalline aluminas since the R-curve can be derived via the bridging stress function. In the currently developed model function the distribution of grain size is considered as a microstructural factor in modeling of bridging stress function and thus the bridging stress function including three constants PM, n, and Cx, can be established analytically and quantitatively. The results indicate that the n value is closely related to the grain size distribution thereby providing a reliability of the current model for the bridging stress analysis. Thus this model which explains the correlation of the bridging stress distribution and microstructual parame-ters is useful for the systematic interpretation of microfracture mechanism including the R-curve behavior in polycrystalline aluminas.

  • PDF

스트레스함수가 감마분포인 가속수명시험 (Accelerated Life Tests under Gamma Stress Distribution)

  • 원영철
    • 대한안전경영과학회지
    • /
    • 제4권3호
    • /
    • pp.59-66
    • /
    • 2002
  • This paper presents accelerated life tests for Type I censoring data under probabilistic stresses. Probabilistic stress, S, is the random variable for stress influenced by test environments, test equipments, sampling devices and use conditions. The hazard rate, $\theta$ is a random variable of environments and a function of probabilistic stress. In detail, it is assumed that the hazard rate is linear function of the stress, the general stress distribution is a gamma distribution and the life distribution for the given hazard rate, $\theta$is an exponential distribution. Maximum likelihood estimators of model parameters are obtained, and the mean life in use stress condition is estimated. A hypothetical example is given to show its applicability.

자동차 헬리컬기어의 하중전달 특성해석 (Analysis of Load Transmission Characteristics for Automobile Helical Gear)

  • 박찬일;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링 (An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

확률밀도함수를 이용한 멤브레인방식 LNG탱크의 선형누적손상도 평가에 관한 연구 (A Study on the Evaluation of Linear Cumulative Damage Factor of Membrane Type LNG Tank by use of Probability Density Function)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.993-999
    • /
    • 2004
  • The estimation of fatigue life at the design stage of membrane type LNG tank is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the tank. In this study, the practical procedure of fatigue life prediction by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function has been shown with the corner region of Gaz Transport Membrane type LNG tank being used as an example. In particular the parameters of Weibull distribution that determine the stress spectrum are discussed. The main results obtained from this study are as follows: 1. The recommended value for the shape parameter of Weibull distribution for the LNG tank is 1.1 in case of using the direct calculation method proposed in this study. 2. The calculated fatigue life is influenced by the shape parameter of Weibull distribution and stress block. The safe fatigue design can be achieved by using higher value of shape parameter and the stress blocks divided into more stress blocks.

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

스트레스함수가 균등분포인 가속수명시험 (Accelerated Life Tests under Uniform Stress Distribution)

  • 원영철
    • 대한안전경영과학회지
    • /
    • 제2권2호
    • /
    • pp.71-83
    • /
    • 2000
  • This paper presents accelerated life tests for Type I censoring data under probabilistic stresses. Probabilistic stress, $S_j$, is the random variable for stress influenced by test environments, test equipments, sampling devices and use conditions. The hazard rate, ,$theta_j$, is the random variable of environments and the function of probabilistic stress. Also it is assumed that the general stress distribution is uniform, the life distribution for the given hazard rate, $\theta$, is exponential and inverse power law model holds. In this paper, we obtained maximum likelihood estimators of model parameters and the mean life in use stress condition.

  • PDF

Efficient methods for integrating weight function: a comparative analysis

  • Dubey, Gaurav;Kumar, Shailendra
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.885-900
    • /
    • 2015
  • This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.

Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • 제15권2호
    • /
    • pp.125-150
    • /
    • 2014
  • Accelerated life tests (ALTs) are extensively used to determine the reliability of a product in a short period of time. Test units are subject to elevated stresses which yield quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, cyclic-stress or random-stress loading and their various combinations. An ALT with linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs has focused on constant-stress, step-stress, ramp-stress schemes and their various combinations where the stress is generally increased. This paper presents an optimal design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. Thermal cycling involves applying high and low temperatures repeatedly over time. The optimal plan consists in finding out relevant experimental variables, namely, stress rates and stress rate change points, by minimizing variance of reliability function with pre-specified mission time under normal operating conditions. The Burr type XII life distribution and time-censored data have been used for the purpose. Burr type XII life distribution has been found appropriate for accelerated life testing experiments. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

Parameter Estimation of the Two-Parameter Exponential Distribution under Three Step-Stress Accelerated Life Test

  • Moon, Gyoung-Ae;Kim, In-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1375-1386
    • /
    • 2006
  • In life testing, the lifetimes of test units under the usual conditions are so long that life testing at usual conditions is impractical. Testing units are subjected to conditions of high stress to yield informations quickly. In this paper, the inferences of parameters on the three step-stress accelerated life testing are studied. The two-parameter exponential distribution with a failure rate function that a log-quadratic function of stress and the tempered failure rate model are considered. We obtain the maximum likelihood estimators of the model parameters and their confidence regions. A numerical example will be given to illustrate the proposed inferential procedures.

  • PDF