• Title/Summary/Keyword: stress dispersion

Search Result 192, Processing Time 0.028 seconds

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst

  • Li, Qingyuan;Li, Xiangxu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.

Wind-tunnel simulations of the suburban ABL and comparison with international standards

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.15-34
    • /
    • 2011
  • Three wind-tunnel simulations of the atmospheric boundary layer (ABL) flow in suburban country exposure were generated for length scale factors 1:400, 1:250 and 1:220 to investigate scale effects in wind-tunnel simulations of the suburban ABL, to address recommended wind characteristics for suburban exposures reported in international standards, and to test redesigned experimental hardware. Investigated parameters are mean velocity, turbulence intensity, turbulent Reynolds shear stress, integral length scale of turbulence and power spectral density of velocity fluctuations. Experimental results indicate it is possible to reproduce suburban natural winds in the wind tunnel at different length scales without significant influence of the simulation length scale on airflow characteristics. However, in the wind tunnel it was not possible to reproduce two characteristic phenomena observed in full-scale: dependence of integral length scales on reference wind velocity and a linear increase in integral length scales with height. Furthermore, in international standards there is a considerable scatter of recommended values for suburban wind characteristics. In particular, recommended integral length scales in ESDU 85020 (1985) are significantly larger than in other international standards. Truncated vortex generators applied in this study proved to be successful in part-depth suburban ABL wind-tunnel simulation that yield a novel methodology in studies on wind effects on structures and air pollution dispersion.

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.

Reliability Evaluation of Hardness and Impact Absorption Energy of Tempered Structure Steel SCM435 (뜨임한 구조용강 SCM435의 경도 및 충격 흡수에너지에 대한 신뢰성 평가)

  • Yun, Seo-Hyun;Gu, Se-Hun;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.681-688
    • /
    • 2019
  • SM45C steel, which is widely used for mechanical structure, was carburized at 870℃ for 4 hours and tempered at 300℃ and 400℃ for 1, 3 and 6 hours. The tempered materials were evaluated for tensile test, hardness test and impact test. In particular, the hardness and the absorption energy were evaluate the reliability by the Weibull statistical analysis. 300℃-1h specimen is considered to be the best heat treatment condition in the tensile stress and the observation of fracture surface. 300℃-1h specimen showed larger shape and scale parameter than the other specimens, and Rockwell hardness variance was small and showed the best characteristics. 400℃-3h specimen showed larger shape and scale parameter than the other specimens, the dispersion of impact absorption energy is small, and showed excellent characteristics.

Flow Properties of Gelatinized Cowpea Flour Dispersion (동부 앙금 호화액의 흐름 성질)

  • 이애랑;김성곤;이신영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.181-185
    • /
    • 1993
  • The effects of concentrations (6~9%), heating temperatures (80, 85, 90 and 95$^{\circ}C$) and heating methods (continuous, method A and instantaneous, method B) on the flow properties of cowpea flour (air-dried sediment) at 6$0^{\circ}C$ were studied. The gelatinized cowpea flour dispersions by method B had higher values of yield stress and consistency index but lower value of flow behavior index compared to those values of method A. The log values of consistency index were positively correlated with the concentration and heating temperature for both methods. The rate of increase in the consistency index value by method B at the same concentration was greater in all heating temperatures than that by method A.

  • PDF

Parametric study on multichannel analysis of surface waves-based nondestructive debonding detection for steel-concrete composite structures

  • Hongbing Chen;Shiyu Gan;Yuanyuan Li;Jiajin Zeng;Xin Nie
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.89-105
    • /
    • 2024
  • Multichannel analysis of surface waves (MASW) method has exhibited broad application prospects in the nondestructive detection of interfacial debonding in steel-concrete composite structures (SCCS). However, due to the structural diversity of SCCS and the high stealthiness of interfacial debonding defects, the feasibility of MASW method needs to be investigated in depth. In this study, synthetic parametric study on MASW nondestructive debonding detection for SCCSs is performed. The aim is to quantitatively analyze influential factors with respect to structural composition of SCCS and MASW measurement mode. First, stress wave composition and propagation process in SCCS are studied utilizing 2D numerical simulation. For structural composition in SCCS, the thickness variation of steel plate, concrete core, and debonding defects are discussed. To determine the most appropriate sensor arrangement for MASW measurement, the effects of spacing and number of observation points, along with distances between excitation points, nearest boundary, as well as the first observation point, are analyzed individually. The influence of signal type and frequency of transient excitation on dispersion figures from forwarding analysis is studied to determine the most suitable excitation signal. The findings from this study can provide important theoretical guidance for MASW-based interfacial debonding detection for SCCS. Furthermore, they can be instrumental in optimizing both the sensor layout design and signal choice for experimental validation.

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron (회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가)

  • Sung, Yong Hyeon;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.721-728
    • /
    • 2017
  • High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

Modeling of Material Properties of Fiber-Reinforced High Strength Concrete (섬유 보강 고강도 콘크리트의 재료 특성 모델링)

  • Yang, In-Hwan;Park, Ji-Hun;Choe, Jeong-Seon;Joh, Changbin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, material properties of steel fiber reinforced high strength concrete (FRHSC) with the compressive strength of about 120MPa were modeled. Steel fiber content of 1.0%, 1.5%, and 2.0% was considered as experimental variable. First of all, compressive strength tests were carried out to determine compressive characteristics of concrete, and compressive stress-strain curves were modeled. For conventional concrete with moderate compressive strength, the stress-strain curves are in the form of parabolic curves, but in the case of high strength concrete reinforced with steel fiber, the curves increase linearly in the form of the straight line. In addition, to understand the tensile properties of FRHSC, the crack mouth opening displacement (CMOD) test was performed, and the tensile stress-CMOD curve was calculated through inverse analysis. When the steel fiber content increased from 1.0% to 1.5%, there was a significant difference of tensile strength. However, when the amount of steel fiber was increased from 1.5% to 2.0%, there was no significant difference of tensile strength, which might result from the poor dispersion and arrangement of steel fiber in concrete.

Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing (젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능)

  • Jang, Jung-Hoon;Wang, Zuo-Jia;GnidaKouong, Joel;Gu, Ga-Young;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

  • PDF

Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars (품종별 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성)

  • Lee, Jungu;Choi, Moonkyeung;Kang, Jinsoo;Chung, Yehji;Jin, Yong-Ik;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • The objective of this research was to elucidate the physicochemical, structural, pasting and rheological properties of potato starch isolated from a foreign potato cultivar ('Atlantic') and new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun'). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and one-dimensional nuclear magnetic resonance (1D NMR) showed that the structural properties of potato starch did not vary significantly with cultivars. RVA analysis demonstrated that the 'Atlantic' starch had the highest breakdown viscosity among all potato starches. In steady shear rheological analysis, all potato starch dispersions showed shear-thinning behaviors (n =0.63-0.72) at $25^{\circ}C$. The highest apparent viscosity (${\eta}_{a,5}$), consistency index (K), and yield stress (${\sigma}_{oc}$) were observed in the 'Goun' starch dispersion. In dynamic shear rheological analysis, storage modulus (G') and loss modulus (G") values of new domestic potato starch dispersions were higher than those of the 'Atlantic' starch dispersion.