DOI QR코드

DOI QR Code

Wind-tunnel simulations of the suburban ABL and comparison with international standards

  • Kozmar, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb)
  • Received : 2010.02.27
  • Accepted : 2010.05.23
  • Published : 2011.01.25

Abstract

Three wind-tunnel simulations of the atmospheric boundary layer (ABL) flow in suburban country exposure were generated for length scale factors 1:400, 1:250 and 1:220 to investigate scale effects in wind-tunnel simulations of the suburban ABL, to address recommended wind characteristics for suburban exposures reported in international standards, and to test redesigned experimental hardware. Investigated parameters are mean velocity, turbulence intensity, turbulent Reynolds shear stress, integral length scale of turbulence and power spectral density of velocity fluctuations. Experimental results indicate it is possible to reproduce suburban natural winds in the wind tunnel at different length scales without significant influence of the simulation length scale on airflow characteristics. However, in the wind tunnel it was not possible to reproduce two characteristic phenomena observed in full-scale: dependence of integral length scales on reference wind velocity and a linear increase in integral length scales with height. Furthermore, in international standards there is a considerable scatter of recommended values for suburban wind characteristics. In particular, recommended integral length scales in ESDU 85020 (1985) are significantly larger than in other international standards. Truncated vortex generators applied in this study proved to be successful in part-depth suburban ABL wind-tunnel simulation that yield a novel methodology in studies on wind effects on structures and air pollution dispersion.

Keywords

References

  1. AIJ (1996), AIJ recommendations for loads on buildings (in English), Architectural Institute of Japan, Tokyo.
  2. American Society of Civil Engineers (ASCE) (2006), Minimum design loads for buildings and other structures, ASCE/SEI 7-05, Reston, Virginia, USA.
  3. Arya, S.P. (1999), Air pollution meteorology and dispersion, Oxford University Press, USA.
  4. Arya, S.P. (2001), Introduction to Micrometeorology, 2nd Ed., Academic Press, New York.
  5. Balendra, T., Shah, D.A., Tey, K.L. and Kong, S.K. (2002), "Evaluation of flow characteristics in the NUS-HDB wind tunnel", J. Wind Eng. Ind. Aerod., 90(6), 675-688. https://doi.org/10.1016/S0167-6105(01)00223-9
  6. Bendat, J.S. and Piersol, A.G. (2000), Random data: analysis and measurement procedures, John Wiley & Sons, New York.
  7. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
  8. Blocken, B., Stathopoulos, T., Saathoff, P. and Wang, X. (2008), "Numerical evaluation of pollutant dispersion in the built environment: Comparisons between models and experiments", J. Wind Eng. Ind. Aerod., 96(10-11), 1817-1831. https://doi.org/10.1016/j.jweia.2008.02.049
  9. Cermak, J.E., Cochran, L.S. and Leffler, R.D. (1995), "Wind-tunnel modeling of the atmospheric surface-layer", J. Wind Eng. Ind. Aerod., 54, 505-513.
  10. Cook, N.J. (1978), "Determination of the model scale factor in wind-tunnel simulations of the adiabatic atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 2(4), 311-321. https://doi.org/10.1016/0167-6105(78)90016-8
  11. Counihan, J. (1969a), "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", Proceedings of the Advisory Group for Aerospace Research and Development (AGARD) Conference.
  12. Counihan, J. (1969b), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3(2), 197-214. https://doi.org/10.1016/0004-6981(69)90008-0
  13. Counihan, J. (1971), "Wind tunnel determination of roughness length as a function of fetch and roughness density of 3-dimensional roughness elements", Atmos. Environ., 5(8), 637-642. https://doi.org/10.1016/0004-6981(71)90120-X
  14. Counihan, J. (1973), "Simulation of an adiabatic urban boundary-layer in a wind-tunnel", Atmos. Environ., 7(7), 673-689. https://doi.org/10.1016/0004-6981(73)90150-9
  15. Counihan, J. (1975), "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972", Atmos. Environ., 9(10), 871-905. https://doi.org/10.1016/0004-6981(75)90088-8
  16. Dyrbye, C. and Hansen, S.O. (1997), Wind loads on structures, John Wiley & Sons, New York.
  17. ESDU 72026 (1972), Characteristics of wind speed in the lower layers of the atmosphere near the ground: strong winds (neutral atmosphere), Engineering Sciences Data Unit.
  18. ESDU 74031 (1974), Characteristics of atmospheric turbulence near the ground, Part II: Single point data for strong winds (neutral atmosphere), Engineering Sciences Data Unit.
  19. ESDU 85020 (1985), Characteristics of atmospheric turbulence near the ground: Part II: single point data for strong winds (neutral atmosphere), Engineering Sciences Data Unit.
  20. EN 1991 Eurocode 1 (2005), Actions on structures — General actions — Part 1-4: Wind actions.
  21. Fang, C. and Sill, B.L. (1992), "Aerodynamic roughness length - correlation with roughness elements", J. Wind Eng. Ind. Aerod., 41(1-3), 449-460. https://doi.org/10.1016/0167-6105(92)90444-F
  22. Farell, C. and Iyengar, A.K.S. (1999), "Experiments on the wind tunnel simulation of atmospheric boundary layers", J. Wind Eng. Ind. Aerod., 79(1-2), 11-35. https://doi.org/10.1016/S0167-6105(98)00117-2
  23. Flay, R.G.J. and Stevenson, D.C. (1988), "Integral length scales in strong winds below 20-m", J. Wind. Eng. Ind. Aerod., 28(1-3), 21-30. https://doi.org/10.1016/0167-6105(88)90098-0
  24. Gartshore, I.S. and De Croos, K.A. (1977), "Roughness element geometry required for wind tunnel simulations of the atmospheric wind", J. Fluid Eng.-T. ASME, 99(3), 480-485. https://doi.org/10.1115/1.3448821
  25. Hargreaves, D.M. and Wright, N.G. (2007), "On the use of the k-epsilon model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
  26. Harris, R.I. (1986), "Longer turbulence length scales", J. Wind Eng. Ind. Aerod., 24(1), 61-68. https://doi.org/10.1016/0167-6105(86)90072-3
  27. Holmes, J.D. (2007), Wind loading of structures, 2nd Ed., Routledge, Taylor & Francis, UK
  28. Holmes, J.D., Baker, C.J., English, E.C. and Choi, E.C.C. (2005), "Wind structure and codification", Wind Struct., 8(4), 235-250. https://doi.org/10.12989/was.2005.8.4.235
  29. Hucho, W.H. (2002), Aerodynamik der stumpfen Korper, Vieweg & Sohn, Wiesbaden.
  30. Hunt, A. (1982), "Wind-tunnel measurements of surface pressures on cubic building models at several scales", J. Wind Eng. Ind. Aerod., 10(2), 137-163. https://doi.org/10.1016/0167-6105(82)90061-7
  31. ISO 4354 (1997), Wind actions on structures, International Standard Organization.
  32. Kolmogorov, A.N. (1941), "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers", Proceedings of the USSR Academy of Sciences, 30, 299-303.
  33. Kozmar, H. (2008), "Influence of spacing between buildings on wind characteristics above rural and suburban areas", Wind Struct., 11(5), 413-426. https://doi.org/10.12989/was.2008.11.5.413
  34. Kozmar, H. (2009), "Natural wind simulation in the TUM boundary layer wind tunnel", Proceedings of the 5th European-African Conference on Wind Engineering, Florence, Italy, July.
  35. Kozmar, H. (2010), "Scale effects in wind tunnel modeling of an urban atmospheric boundary layer", Theor. Appl. Climatol., 100(1-2), 153-162. https://doi.org/10.1007/s00704-009-0156-3
  36. Kozmar, H., Džijan, I. and Šavar, M. (2005), "Uniformity of atmospheric boundary layer model in the wind tunnel (in Croatian)", Strojarstvo, 47(5-6), 157-167.
  37. Lim, H.C., Castro, I.P. and Hoxey, R.P. (2007), "Bluff bodies in deep turbulent boundary layers: Reynoldsnumber issues", J. Fluid Mech., 571, 97-118. https://doi.org/10.1017/S0022112006003223
  38. Melbourne, W.H. (1979), "Turbulence effects on maximum surface pressures-a mechanism and possibility of reduction", Proceedings of the 5th International Conference on Wind Engineering, Fort Collins, CO, USA, July.
  39. Pernpeintner, A., Schnabel, P., Schuler, A. and Theurer, W. (1995), Appendix 17: Qualifizierungsversuch, WTGMerkblatt uber Windkanalversuche in der Gebäudeaerodynamik, (Ed. Plate E.J.), WTG-Berichte Nr. 3, Windtechnologische Gesellschaft WTG e.V.
  40. Peterka, J.A., Hosoya, N., Dodge, S., Cochran, L. and Cermak, J.E. (1998), "Area-average peak pressures in a gable roof vortex region", J. Wind Eng. Ind. Aerod., 77-78(1), 205-215. https://doi.org/10.1016/S0167-6105(98)00144-5
  41. Plate, E.J. (1982), Wind tunnel modelling of wind effects in engineering, Engineering Meteorology, Elsevier Scientific Publishing Company, Amsterdam, New York.
  42. Schlichting, H. and Gersten, K. (1997), Grenzschicht-Theorie, 9th Ed., Springer, Berlin.
  43. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, 3rd Ed., John Wiley & Sons, New York.
  44. Sockel, H. (1984), Aerodynamik der Bauwerke, Vieweg & Sohn, Braunschweig.
  45. Stathopoulos, T. and Surry, D. (1983), "Scale effects in wind-tunnel testing of low buildings", J. Wind Eng. Ind. Aerod., 13(1-3), 313-326. https://doi.org/10.1016/0167-6105(83)90152-6
  46. Stull, R.B. (2003), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht.
  47. Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T. and Ishibashi, R. (2007), "Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 95(6), 411-427. https://doi.org/10.1016/j.jweia.2006.08.005
  48. Tieleman, H.W. (1990), "Wind-tunnel simulation of the turbulence in the surface-layer", J. Wind Eng. Ind. Aerod., 36, 1309-1318. https://doi.org/10.1016/0167-6105(90)90127-X
  49. Tieleman, H.W. (2003), "Wind-tunnel simulation of wind loading on low-rise structures: a review", J. Wind Eng. Ind. Aerod., 91(12-15), 1627-1649. https://doi.org/10.1016/j.jweia.2003.09.021
  50. Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proc. Natl. Acad. Sci. USA, 34(11), 530-539. https://doi.org/10.1073/pnas.34.11.530
  51. Wang, Z.Y., Plate, E.J., Rau, M. and Keiser, R. (1996), "Scale effects in wind tunnel modelling", J. Wind Eng. Ind. Aerod., 61(2-3), 113-130. https://doi.org/10.1016/0167-6105(96)00049-9
  52. Yang, Y., Gu, M., Chen, S.Q. and Jin, X.Y. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001

Cited by

  1. Surface pressure distribution on patterned cylinders under simulated atmospheric boundary layer winds vol.27, pp.1, 2018, https://doi.org/10.1002/tal.1404
  2. Calculated external pressure coefficients on livestock buildings and comparison with Eurocode 1 vol.15, pp.6, 2012, https://doi.org/10.12989/was.2012.15.6.481
  3. Complex terrain effects on wake characteristics of a parked wind turbine vol.110, 2016, https://doi.org/10.1016/j.engstruct.2015.11.033
  4. Verification of a tree canopy model and an example of its application in wind environment optimization vol.15, pp.5, 2012, https://doi.org/10.12989/was.2012.15.5.409
  5. Physical modeling of complex airflows developing above rural terrains vol.12, pp.3, 2012, https://doi.org/10.1007/s10652-011-9224-1
  6. A combination method to generate fluctuating boundary conditions for large eddy simulation vol.20, pp.4, 2015, https://doi.org/10.12989/was.2015.20.4.579
  7. Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow vol.99, pp.2-3, 2011, https://doi.org/10.1016/j.jweia.2010.11.001
  8. Atmospheric boundary layer simulation in a new open-jet facility at LSU: CFD and experimental investigations vol.110, 2017, https://doi.org/10.1016/j.measurement.2017.06.027
  9. Steady RANS model of the homogeneous atmospheric boundary layer vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.006
  10. Atmospheric boundary-layer simulation for the built environment: Past, present and future vol.75, 2014, https://doi.org/10.1016/j.buildenv.2014.02.004
  11. Designing laboratory wind simulations using artificial neural networks vol.120, pp.3-4, 2015, https://doi.org/10.1007/s00704-014-1201-4
  12. Computational modeling of the atmospheric boundary layer using various two-equation turbulence models vol.19, pp.6, 2014, https://doi.org/10.12989/was.2014.19.6.687
  13. Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k–ε turbulence model vol.115, 2013, https://doi.org/10.1016/j.jweia.2013.01.011
  14. Flow and Turbulence Control in a Boundary Layer Wind Tunnel Using Passive Hardware Devices vol.41, pp.6, 2017, https://doi.org/10.1007/s40799-017-0196-z
  15. Numerical simulation of wind loading on roadside noise mitigation structures vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.299
  16. Simplified elements for wind-tunnel measurements with type-III-terrain atmospheric boundary layer vol.91, 2016, https://doi.org/10.1016/j.measurement.2016.05.078
  17. Simplified Wind Flow Model for the Estimation of Aerodynamic Effects on Small Structures vol.139, pp.3, 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000508
  18. Improved Experimental Simulation of Wind Characteristics around Tall Buildings vol.25, pp.4, 2012, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000167
  19. Characteristics of natural wind simulations in the TUM boundary layer wind tunnel vol.106, pp.1-2, 2011, https://doi.org/10.1007/s00704-011-0417-9
  20. COMPARISON OF TESTING RESULTS OF THREE POORLY STREAMLINED ENTERTAINMENT VENUES / TRIJŲ SUDĖTINGO PAVIDALO PRAMOGINIŲ STATINIŲ MAKETŲ BANDYMŲ REZULTATŲ GRETINIM vol.18, pp.2, 2011, https://doi.org/10.3846/13923730.2012.672455
  21. An approach to simulate wind fields around an urban environment for wind energy application vol.13, pp.1, 2011, https://doi.org/10.1007/s10652-012-9258-z
  22. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model vol.24, pp.5, 2011, https://doi.org/10.12989/was.2017.24.5.465