• Title/Summary/Keyword: stress cracking

Search Result 1,023, Processing Time 0.034 seconds

Stress Corrosion Cracking Lifetime Prediction of Spring Screw (스프링 체결나사의 응력부식균열 수명예측)

  • Koh, S.K.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

Influence of Molding Conditions on Environmental Stress Cracking Resistance of Injection Molded Part (사출성형품의 공정 조건에 따른 내환경응력균열 특성에 관한 연구)

  • Choi, D.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.173-178
    • /
    • 2011
  • Environmental Stress Cracking(ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers. The exposure of polymers to liquid chemicals tends to accelerate the crazing process, initiating crazes at stresses that are much lower than the stress causing crazing in air. In this study, ESC of acrylonitirile butadiene styrene(ABS) was investigated as a function of the molding conditions such as injection velocity, packing pressure, and melt temperature. A constant strain was applied to the injection molded specimens through a 1.26% strain jig and a mixture of toluene and isopropyl alcohol was used as the liquid chemical. In order to examine the effects of the molding conditions on ESC, an experimental design method was adopted and it was found that the injection velocity was the dominant factor. In addition, predictions from numerical analyses were compared with the experimental results. It was found that the residual stress in the injection molded part was associated with the environmental stress cracking resistance (ESCR).

Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.40 no.5
    • /
    • pp.129-133
    • /
    • 2020
  • The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of cold-worked 316L.

An Analysis on Surface Cracking Due to Thermomechanical Loading

  • Kim, S.S.;Lee, K.H.;Lee, S.M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.172-176
    • /
    • 1995
  • This study deals with thermomechanical cracking between the friction surface and the interior of the brake disc. Analytical model considered in this study was a semi-infinite solid subjected to the thermal loading of an asperity moving with a high speed. The temperature field and the thermal stress state were obtained and discussed on the basis of Von Mises and Tresca Yielding Criterion. Analytical results showed that the dominant stress in cracking of friction brake is thermal stress and cracking location is dependent on the friction coefficient of contact and Peclet number. On the basis of analytical results thermomechanical cracking model is proposed.

A Study on the Evaluation Technology of Welds Integrity in Nuclear Power Plants

  • Chang, Hyun-Young;Kim, Jong-Sung;Jin, Tae-Eun
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-32
    • /
    • 2007
  • The final goal of this study is to develop the core technologies applicable to the design, operation and maintenance of welds in nuclear structures. This study includes predicting microstructure changes and residual stress for welded parts of nuclear power plant components. Furthermore, researches are performed on evaluating fatigue, corrosion, and hydrogen induced cracking and finally constructs systematically integrated evaluation system for structural integrity of nuclear welded structures. In this study, metallurgical and mechanical approaches have been effectively coordinated considering real welding phenomena in the fields of welds properties such as microstructure, composition and residual stress, and in the fields of damage evaluations such as fatigue, corrosion, fatigue crack propagation, and stress corrosion cracking. Evaluation techniques tried in this study can be much economical and effective in that it uses theoretical/semi-empirical but includes many additional parameters that can be introduced in real phenomena such as phase transformation, strength mismatch and residual stress. It is clear that residual stress makes great contribution to fatigue and stress corrosion cracking. Therefore the mitigation techniques have been approached by reducing the residual stress of selected parts resulting in successful conclusions.

Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions (전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포)

  • 조영태;임광희;고재용;김홍건
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.87-90
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.

  • PDF

Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater (양극산화된 5083-H321 합금의 천연해수 내 전기화학적 부식 및 응력부식균열 특성에 관한 연구)

  • Hwang, Hyun-kyu;Shin, Dong-Ho;Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.259-264
    • /
    • 2020
  • Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.

Effect of Additives on the Stress Corrosion Cracking Behavior of Alloy 600 in High Temperature Caustic Solutions

  • Hur, Do Haeng;Kim, Joung Soo;Baek, Jae Sun;Kim, Jung Gu
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.6-13
    • /
    • 2004
  • The effect of inhibitors on the electrochemical behavior and the stress corrosion cracking resistance of Alloy 600(UNS N06600) was evaluated in 10% sodium hydroxide solution at $315^{\circ}C$. The specimens of a C-ring type for stress corrosion cracking test were polarized at 150 mV above the corrosion potential for 120 hours with and without inhibitors such as titanium oxide, titanium boride and cerium boride. The chemical compositions of the films formed on the crack tip in the C-ring specimens were analyzed using a scanning Auger electron spectroscopy. The cerium boride, the most effective, was observed to decrease the crack propagation rate more than a factor of three compared with that obtained in no inhibitor solution. It was found that the changes of the active-passive transition potentials and the film compositions were related to the resistance to stress corrosion cracking in high temperature caustic solution.

A study of the sulfide stress corrosion cracking characteristic of A106 Gr B steep pipe weldment (황화수소환경에서 A106 Gr-B 강 용접부의 응력부식균열 특성 평가)

  • Lee, Gyu-Young;Park, Kwang-Jin;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.114-119
    • /
    • 2007
  • Sulfide stress cracking (SSC) of materials exposed to oilfield environment containing hydrogen sulfide $(H_{2}S)$ has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_{2}S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $(H_{2}S)$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

Stress Corrosion Cracking Characteristics of Shot-peened Stainless Steel Containing Ti (Shot-peening 표면처리된 Ti 함유 스테인리스강의 응력균열부식)

  • Choe Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.6
    • /
    • pp.350-359
    • /
    • 2004
  • Stress corrosion cracking(SCC) characteristics of shot-peened stainless steel containing Ti (0.09 wt%-0.92 wt%) fabricated by the vacuum furnace were investigated using SCC tester and potentiostat. The homogenization and the sensitization treatment were carried out at $1050^{\circ}C$ for 1hr and $650^{\circ}C$ for 5 hr. The samples for SCC were shot-peened using $\Phi$0.6 mm steel ball for 4 min and 10 min. Intergranular and pitting corrosion characteristics were investigated by using EPR and CPPT. SCC test was carried out at the condition of$ 288^{\circ}C$, 90 kgf pressure, water with 8 ppm dissolved oxygen, and $8.3xl0^{-7}$/s strain rate. After the corrosion and see test, the surface of the tested specimen was observed by the optical microscope, TEM and SEM. Specimen with Ti/C ratio of 6.14 showed high tensile strength at the sensitization treatment. The tensile strength decreased with the increase of the Ti/C ratio. Pitting and intergranular corrosion resistance increased with the increase of Ti/C ratio. Stress corrosion cracking strength of shot-peened specimen was higher than that of non shot- peened specimen. Stress corrosion cracking strength decreased with the increase of the Ti/C ratio.