• Title/Summary/Keyword: stress and strain distributions

Search Result 208, Processing Time 0.033 seconds

Structural Analysis of Composite Wind Blade Using Finite Element Technique (유한요소기법을 이용한 복합재 풍력 블레이드 구조해석)

  • Unseong Kim;Kyeongryeol Park;Seongmin Kang;Yong Seok Choi;Kyungeun Jeong;Soomin Lee;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.4
    • /
    • pp.133-138
    • /
    • 2024
  • This study evaluates the structural safety of wind turbine blades, analyzes the behavior of composite laminate structures with and without defects, and assesses surface erosion wear. The NREL 5 MW standard is applied to assign accurate composite material properties to each blade section. Modeling and analysis of the wind turbine blades reveal stable behavior under individual load conditions (gravity, motor speed, wind speed), with the web bearing most of the load. Surface erosion wear analysis in which microparticle impacts are simulated on the blade coating shows a maximum stress and maximum displacement of 14 MPa and 0.02 mm, respectively, indicating good initial durability, but suggest potential long-term performance issues due to cumulative effects. The study examines defect effects on composite laminate structures to compare the stress distribution, strain, and stiffness characteristics between normal and cracked states. Although normal conditions exhibit stable behavior, crack defects lead to fiber breakage, high-stress concentration in the vulnerable resin layer, and decreased rigidity. This demonstrates that local defects can compromise the safety of the entire structure. The study utilizes finite element analysis to simulate various load scenarios and defect conditions. Results show that even minor defects can significantly alter stress distributions and potentially lead to catastrophic failure if left unaddressed. These findings provide valuable insights for wind turbine blade safety evaluations, surface protection strategies, and composite structure health management. The methodology and results can inform the design improvements, maintenance strategies, and defect detection techniques of the wind energy industry.

On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates (적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선)

  • Kim, Jun-Sik;Han, Jang-Woo;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2011
  • In this paper, an systematic approach is presented, in which the mixed variational theorem is employed to incorporate independent transverse shear stresses into a classical higher-order shear deformation theory(HSDT). The HSDT displacement field is taken to amplify the benefits of using a classical shear deformation theory such as simple and straightforward calculation and numerical efficiency. Those independent transverse shear stresses are taken from the fifth-order polynomial-based zig-zag theory where the fourth-order transverse shear strains can be obtained. The classical displacement field and independent transverse shear stresses are systematically blended via the mixed variational theorem. Resulting strain energy expressions are named as an enhanced higher-order shear deformation theory via mixed variational theorem(EHSDTM). The EHSDTM possess the same computational advantage as the classical HSDT while allowing for improved through-the-thickness stress and displacement variations via the post-processing procedure. Displacement and stress distributions obtained herein are compared to those of the classical HSDT, three-dimensional elasticity, and available data in literature.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Seong, Dae-Yong;Yang, Dong-Yol;Lim, Ji-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

Heat transfer coefficients for F.E analysis in warm forging processes (온간 단조 공정에서의 열전달 계수)

  • Kang J. H.;Ko B. H.;Jae J. S.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF

Estimation for the Distribution of Creep Crack Growth Coefficients by Probabilistic Assessment (확률적 방법에 의한 크리프 균열성장 계수의 분포 추정)

  • Lee, Sang-Ho;Yoon, Kee-Bong;Choe, Byung-Hak;Min, Doo-Sik;Ahn, Jong Seok;Lee, Gil Jae;Kim, Sun-Hwa
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.791-797
    • /
    • 2010
  • The creep crack growth rate (da/dt) of the Cr-Mo steels tested by pre-crack and the voltage (or resistance) variables were related into fracture parameter (Ct), crack growth coefficient (H), and an exponent (q) in the parts of Base, weld and HAZ. The fracture parameter (Ct) has various variables relating to the specimen and crack shape, applied stress, and creep strain curve. The H and q was inferred by OLS regression (ordinary least square method), and the H values were solved in statistics and probability assessment, which were attained fromPDF's distributions (probability density function). The HAZ part has the highest value of q by OLS regression and the widest distribution of H by PDF of WEIBULL, which means that the crack sensitivity of HAZ should be cautioned against the creep crack growth and failure.

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.