• Title/Summary/Keyword: stress and strain

Search Result 5,254, Processing Time 0.028 seconds

Stress-Strain-Strain Rate of Overconsolidated Clay Dependent on Stress and Time History (응력이력과 시간이력에 따른 과압밀점토의 응력-변형-변형률 속도)

  • 한상재;김수삼;김병일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.143-150
    • /
    • 2003
  • This study deals with the stress-strain-strain rate behaviour of overconsolidated clay. Consolidated-drained stress path tests were performed on the stress-time dependent condition. Stress history consists of rotation angle of stress path, overconsolidation ratio, and magnitude of length of recent stress path. Time history includes loading rate of recent and current stress path. Test results show that all influence factors have an increasing strain rate with time, and the strain rate varies with the change of the rotation angle of stress path. With the increase of overconsolidation ratio and loading rate of current stress path, the strain rate also increases. For the stress history, correlation between stress-strain and strain rate is indicated but the time history is not.

Applicability of exponential stress-strain models for carbonate rocks

  • Palchik, Vyacheslav
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.919-925
    • /
    • 2018
  • Stress-strain responses of weak-to-strong carbonate rocks used for tunnel construction were studied. The analysis of applicability of exponential stress-strain models based on Haldane's distribution function is presented. It is revealed that these exponential equations presented in transformed forms allow us to predict stress-strain relationships over the whole pre-failure strain range without mechanical testing of rock samples under compression using a press machine and to avoid measurements of axial failure strains for which relatively large values of compressive stress are required. In this study, only one point measurement (small strain at small stress) using indentation test and uniaxial compressive strength determined by a standard Schmidt hammer are considered as input parameters to predict stress-strain response from zero strain/zero stress up to failure. Observations show good predictive capabilities of transformed stress-stress models for weak-to-strong (${\sigma}_c$ <100 MPa) heterogeneous carbonate rocks exhibiting small (< 0.5 %), intermediate (< 1 %) and large (> 1 %) axial strains.

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis

  • Kweon, Hyeong Do;Kim, Jin Weon;Song, Ohseop;Oh, Dongho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.647-656
    • /
    • 2021
  • Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of strain from a typical tensile test. Before necking, the true stress and strain values are directly converted from engineering stress and strain data, respectively. After necking, a true stress-strain equation is determined by iteratively conducting finite element analysis using three pieces of information at the necking and the fracture points. The Hockett-Sherby equation is proposed as an optimal stress-strain model in a non-uniform deformation region. The application to the stainless steel under different temperatures and loading conditions verifies that the strain hardening behavior of the material is adequately described by the determined equation, and the estimated engineering stress-strain curves are in good agreement with those of experiments. The presented method is intrinsically simple to use and reduces iterations because it does not require much experimental effort and adopts the approach of determining the stress-strain equation instead of correcting the individual stress at each strain point.

The effect of a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory

  • Mehdi Mohammadimehr
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • In this article, a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory with symmetric and asymmetric distributions of porous core and functionally graded material facesheets is introduced. According to nonlocal elasticity Eringen's theory (nonlocal stress elasticity theory), the stress at a reference point in the body is dependent not only on the strain state at that point, but also on the strain state at all of the points throughout the body; while, according to a new nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Also, with combinations of two concepts, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It is concluded that the natural frequency decreases with an increase in the nonlocal stress parameter; while, this effect is vice versa for nonlocal strain elasticity, because the stiffness of Timoshenko sandwich beam decreases with increasing of the nonlocal stress parameter; in which, the nonlocal strain parameter leads to increase the stiffness of structures at micro/nano scale. It is seen that the natural frequency by considering both nonlocal stress parameter and nonlocal strain parameter is higher than the nonlocal stress parameter only and lower for a nonlocal strain parameter only.

Stress Relaxation of Wood and Theoretical Models under Tensile and Bending Strain (인장과 휨변형하에서 목재의 응력이완 및 이론모형)

  • Jang, Sang-Sik;Kang, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.13-19
    • /
    • 1998
  • Stress relaxation tests have been performed under five different tensile strain levels and five different bending strain levels. Three different theoretical models have been developed based on four-element Burger's model, viscoelastic theory and viscous-viscoelastic theory. Experimental data were used to obtain parameters of the models and to verify accuracy of the models. Among the three theoretical models developed in this study, three-integral model (Model 3) based on viscous-viscoelastic theory showed the most exact estimations of stress relaxation under both tensile and bending strains and their correlation coefficients were greater than 0.99 for all the strain levels. Model 1 showed little initial stress relaxation. Model 2 showed excessive initial relaxation and, then, no relaxation after about 20 minute of strain application. Stress retention under strain decreased as strain increased, which means increased stress relaxation as strain increases. When the strain level was less than proportional limit, the effect of strain level on stress relaxation was not clearly shown. However, this effect was increased as strain level increased when strain level was greater than proportional limit.

  • PDF

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets

  • Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.

Developement of Hyperbolic Model Considering Strain Dependency (변형률 의존성을 고려한 쌍곡선 모델의 개발)

  • Lee, Yong-An;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.644-655
    • /
    • 2008
  • Conventional hyperbolic model does not satisfactorily predict the overall stress-strain behaviors of various geomaterials. Tatsuoka and Shibuya(1992) suggest the generalized hyperbolic equation(GHE) considering strain dependency and calculated performance is in good agreement with precise triaxial compression test results of stress-strain relations over wide range of strains before peak stress condition in some cases, but GHE model also does not satisfactorily predict stress-strain relations as strain goes on state of peak stress in most cases. For improve a weak point of the GHE, in this study, modified form of generalized hyperbolic equation (MGHE model) is proposed which can predict highly nonlinear stress-strain behavior for various geomaterials from small strain to peak stress condition.

  • PDF

Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N

  • Chen, Xiaohui;Chen, Xu;Chen, Haofeng
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • Uniaxial ratcheting behavior of Z2CND18.12N austenitic stainless steel used nuclear power plant piping material was studied. The results indicated that ratcheting strain increased with increasing of stress amplitude under the same mean stress and different stress amplitude, ratcheting strain increased with increasing of mean stress under the same stress amplitude and different mean stress. Based on least square method, a suitable method to arrest ratcheting by loading the materials was proposed, namely determined method of zero ratcheting strain rate. Zero ratcheting strain rate occur under specified mean stress and stress amplitudes. Moreover, three dimensional ratcheting boundary surface graph was established with stress amplitude, mean stress and ratcheting strain rate. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations. The graph showed the ratcheting behavior under various combinations of mean and amplitude stresses. The graph was also expressed with the help of experimental results of certain sets of mean and stress amplitude conditions. Further, experimentation cost and time can be saved.

Combined strain gradient and concrete strength effects on flexural strength and ductility design of RC columns

  • Chen, M.T.;Ho, J.C.M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.607-642
    • /
    • 2015
  • The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) columns. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress developed in flexure. However, no quantitative model was available to evaluate the strain gradient effect on concrete under flexure. Previously, the authors have conducted experimental studies to investigate the strain gradient effect on maximum concrete stress and respective strain and developed two strain-gradient-dependent factors k3 and ko for modifying the flexural concrete stress-strain curve. As a continued study, the authors herein will extend the investigation of strain gradient effects on flexural strength and ductility of RC columns to concrete strength up to 100 MPa by employing the strain-gradient-dependent concrete stress-strain curve using nonlinear moment-curvature analysis. It was evident from the results that both the flexural strength and ductility of RC columns are improved under strain gradient effect. Lastly, for practical engineering design purpose, a new equivalent rectangular concrete stress block incorporating the combined effects of strain gradient and concrete strength was proposed and validated. Design formulas and charts have also been presented for flexural strength and ductility of RC columns.

A study on strain specification and safety degree of connection joints of steel structural member (강구조부재 연결부의 변형특성 및 안전도에 관한 연구)

  • 김경진;김두환
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.4
    • /
    • pp.5-10
    • /
    • 1986
  • On SWS 41 Plates jointed by the F11T M 20 high strength bolts the study on stress behavior and safety degree until rupture in static tensile tests were performed. By these results, in case of no clamping force stress concentration was extremed for strain of about 10% higher ratio. Elastic strain occurred to change of test specimens depth by the load and plastic strain occurred to local minute sleep after elastic strain. compared shear stress with tension stress from the fracture load it was showned lower values than the maximum shear stress theory and stress strain energy theory.

  • PDF