• Title/Summary/Keyword: stress amplitude

Search Result 537, Processing Time 0.037 seconds

Study on Structural Safety Analysis of Upper Arm (어퍼암의 구조적 안전성 해석에 대한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.

Fatigue Strength Evaluation of Bogie Frame for Power Car (동력차용 대차프레임의 피로강도평가)

  • Lee, Hak-Ju;Han, Seung-U;Augagneur Sylvain;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

Structural Behavior of the Cylinder Cover Stud of Marine Diesel Engine (박용엔진 실린더 커버 스터드의 구조거동 분석)

  • Kim, Byung-Joo;Lee, Jae-Ohk;Park, Jin-Soo;Kim, Se-Lak
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.267-268
    • /
    • 2006
  • The cylinder cover stud of low-speed marine diesel engine is more than just a stud. It is a large structural element occasionally weighing over 200 kg used for assembling the combustion chamber components. Therefore, to understand the structural behavior of the stud and design it safely is quite important considering a catastrophic failure which can be arisen from an inadequate use of it. In this paper, the analysis results of the structural behavior of the stud is introduced. Strain measurement results compared with FE analysis results are summarized. The results showed that 1) the stud stress increased with engine operating load, 2) the maximum stress amplitude was about 10 MPa which is far smaller than the stud's fatigue strength of 61 MPa, 3) the stress ratio is higher than 0.9 and the stud's load factor is about 20 %, and 4) about 7 % of initial pressure tightening load was reduced while changing to a nut tightened condition.

  • PDF

Survival of the Insulator under the electrical stress condition at cryogenic temperature

  • Baek, Seung-Myeong;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.10-14
    • /
    • 2013
  • We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80 % of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

Structural Safety Analysis on Bicycle Suspension Seat Post (자전거 서스펜션 안장봉에 대한 구조 안정성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.72-81
    • /
    • 2012
  • This study investigates structural, fatigue and modal analyses at bicycle suspension seat post. When weight is applied to the saddle, models 1 and 2 have the weakest strength at the part connected with saddle. And model 2 is greater total deformation and equivalent stress than model 1. Among the cases of nonuniform fatigue loads at models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4MPa$ and the amplitude stress of 0 to $10^4MPa$, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Model 1 has better impulse relaxation and passenger sensitivity than model 2. The structural result of this study can be effectively utilized with the design of bicycle suspension seat post by investigating prevention and durability against its damage.

Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs) (저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Kim, Sa-Wong;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF

Design of anchor-bolt for the rail fastening system with baseplate (베이스플레이트식 체결장치의 앵커볼트 설계)

  • Kim, Eun;Jang, Seung-Yup;Cho, Yong-Chin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.508-513
    • /
    • 2006
  • Anchor bolt in baseplate fastenings on the slab track is an important component to conform placing and safety of fastenings. Due to the way of load transmission control of fastenings, sometimes anchor bolt has to be applied lateral load. So we have to take care for it when we design. Especially, in the case of anchor bolt which is applied loads repeatedly, we have to consider fatigue failure. If parts of machine are damaged in static loads, stress will exceed the yield strength. So parts could be transformed largely. Therefore because they are visible to the naked eyes, we can replace parts before failure. However, because fatigue failure that are invisible to the naked eyes happen unexpectedly, it's very dangerous. To make a reasonable design of anchor bolts, we will analyze them by changing diameters of anchor bolt, quality of insert, initial gap between anchor bolt and insert, the presence of insert, etc. which affect the stresses of anchor bolts. We can get the maximum and minimum amplitude of stress through the modified Goodman diagram or Smith diagram which represents limit of all strengths and stress components to the average stress. We also tried to show the way of examining the expected th life of anchor bolt briefly through considering above.

  • PDF

Surface crack propagation behavior and crack closure phenomena in 5083-H113 aluminum alloy (5083-H113 알루미늄合金의 表面균열進展擧動과 균열닫힘 現象)

  • 박영조;김정규;신용승;김영운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.243-252
    • /
    • 1987
  • The propagation and closure behavior of surface crack initiated at a sharply notched specimens were investigated in 5083-H113 aluminium alloy under constant amplitude of tension load by the unloading elastic compliance method. The crack shape (aspect ratio) was found to be approximately semicircular during the crack was being small and to be changed to semi-elliptical during it was being long. The propagation rate of a surface crack initiated from notch root decelerated with increasing crack length when the crack was small and then accelerated when it was large. The effect of stress ratio was large in lower .DELTA.K range, but the effective stress intensity factor range .DELTA.K$_{eff}$ was found to diminish the difference of the crack propagation rate. By considering the increase in crack closure stress with crack length and examining the microphotographs, plasticity-induced and roughness-induced crack closure mechanisms were predominant in the range of this study.y.

Seismic deformation behaviors of the soft clay after freezing-thawing

  • Zhen-Dong Cui;Meng-Hui Huang;Chen-Yu Hou;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.303-316
    • /
    • 2023
  • With the development and utilization of urban underground space, the artificial ground freezing technology has been widely used in the construction of underground engineering in soft soil areas. The mechanical properties of soft clay changed greatly after freezing and thawing, which affected the seismic performance of underground structures. In this paper, a series of triaxial tests were carried out to study the dynamic response of the freezing-thawing clay under the seismic load considering different dynamic stress amplitudes and different confining pressures. The reduction factor of dynamic shear stress was determined to correct the amplitude of the seismic load. The deformation development mode, the stress-strain relationship and the energy dissipation behavior of the soft clay under the seismic load were analyzed. An empirical model for predicting accumulative plastic strain was proposed and validated considering the loading times, the confining pressures and the dynamic stress amplitudes. The relevant research results can provide a theoretical reference to the seismic design of underground structures in soft clay areas.